• Title/Summary/Keyword: AMPK phosphorylation

Search Result 141, Processing Time 0.025 seconds

Hibiscus manihot leaves Attenuate Accumulation of Lipid Droplets by Activating Lipolysis, Browning and Autophagy, and Inhibiting Proliferation of 3T3-L1 Cells

  • Na Gyeong Geum;Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Jin Boo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2023
  • In the present study, the effects of HML on lipolysis, adipocyte browning, autophagy, and proliferation were investigated. HML affected lipolysis by increasing the protein levels of ATGL and HSL, and phosphorylation levels of HSL and AMPK. Furthermore, HSL decreased the perilipin-1 levels. In addition, free glycerol content was increased by HML treatment. HML affected adipocyte browning by increasing the protein levels of UCP-1, PGC-1α, and PRDM16. In addition, HML affected autophagy by increasing the levels of LC3-I and LC3-II, and decreasing those of SQSTM1/p62. Moreover, HML affected adipocyte proliferation by suppressing the proliferation of 3T3-L1 cells due to arrest of the cell cycle via blocking the expression of β-catenin and cyclin D1. These results suggest that HML induces lipolysis, adipocyte browning, autophagy, and inhibits excessive proliferation of adipocytes.

Anti-obesity effect of 3,5-dicaffeoylquinic acid on high-fat diet mouse (고지방식이 마우스에서 3,5-dicaffeoylquinic acid의 항비만 효과)

  • Kang, Jin Yong;Park, Seon Kyeong;Kim, Jong Min;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Kim, Dae Ok;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.81-89
    • /
    • 2019
  • This study was performed to confirm the influence of chlorogenic acid (CGA) and 3,5-dicaffeyolquinic acid (3,5-diCQA) intake on problems caused by high-fat diet. CGA was more effective in suppressing weight gain than 3,5-diCQA. In contrast, 3,5-diCQA was more effective in improving glucose tolerance than CGA. In the biopsy, it was confirmed that CGA inhibited visceral fat and liver fat accumulation. 3,5-diCQA also inhibited visceral fat accumulation, but 3,5-diCQA increased liver fat accumulation. The liver fat accumulation induced oxidative stress, but 3,5-diCQA reduced oxidative damage through its antioxidant activity. The increased liver fat accumulation was because a 3,5-diCQA greatly increased Akt phosphorylation and decreased AMPK phosphorylation in the liver. Consequently, CGA was effective in alleviating the problems caused by high-fat diets, while maintaining normal balance. 3,5-diCQA also showed a positive effect on problems caused by high-fat diets, but it increased liver fat accumulation and thereby had negative consequences.

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice (고지방식이 비만쥐의 지방관련 단백질의 변화)

  • Seo, Eun-Hui;Han, Ying;Park, So-Young;Koh, Hyong-Jong;Lee, Hye-Jeong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1019-1026
    • /
    • 2010
  • Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.

Arctiin inhibits adipogenesis in 3T3-L1 cells and decreases adiposity and body weight in mice fed a high-fat diet

  • Min, Byulchorong;Lee, Heejin;Song, Ji Hye;Han, Myung Joo;Chung, Jayong
    • Nutrition Research and Practice
    • /
    • v.8 no.6
    • /
    • pp.655-661
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The purpose of this study was to examine the effects and associated mechanisms of arctiin, a lignan compound found in burdock, on adipogenesis in 3T3-L1 cells. Also, the effects of arctiin supplementation in obese mice fed a high-fat diet on adiposity were examined. MATERIALS/METHODS: 3T3-L1 cells were treated with arctiin (12.5 to $100{\mu}M$) during differentiation for 8 days. The accumulation of lipid droplets was determined by Oil Red O staining and intracellular triglyceride contents. The expressions of genes related to adipogenesis were measured by real-time RT-PCR and Western blot analyses. For in vivo study, C57BL/6J mice were first fed either a control diet (CON) or high-fat diet (HF) to induce obesity, and then fed CON, HF, or HF with 500 mg/kg BW arctiin (HF + AC) for four weeks. RESULTS: Arctiin treatment to 3T3-L1 pre-adipocytes markedly decreased adipogenesis in a dose-dependent manner. The arctiin treatment significantly decreased the protein levels of the key adipogenic regulators $PPAR{\gamma}$ and $C/EBP{\alpha}$, and also significantly inhibited the expression of SREBP-1c, fatty acid synthase, fatty acid-binding protein and lipoprotein lipase. Also, arctiin greatly increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target phosphorylated-acetyl CoA carboxylase. Furthermore, administration of arctiin significantly decreased the body weight in obese mice fed with the high-fat diet. The epididymal, perirenal or total visceral adipose tissue weights of mice were all significantly lower in the HF + AC than in the HF. Arctiin administration also decreased the sizes of lipid droplets in the epididymal adipose tissue. CONCLUSIONS: Arctiin inhibited adipogenesis in 3T3-L1 adipocytes through the inhibition of $PPAR{\gamma}$ and $C/EBP{\alpha}$ and the activation of AMPK signaling pathways. These findings suggest that arctiin has a potential benefit in preventing obesity.

Anti-obesity Effects of Water and Ethanol Extracts of Black Ginseng (흑삼의 열수 및 에탄올 추출물의 항비만 효과)

  • Park, Hye-Jin;Kim, Ae-Jung;Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.314-323
    • /
    • 2015
  • Black ginseng was made by steaming raw white ginseng nine times at $100^{\circ}C$ for 2 h and drying. We then performed pilot experiments using the nine black ginseng extracts for different steaming and drying times to determine their anti-obesity effects. Two ginseng extracts, steaming and drying five times (FSFD) and steaming and drying nine times (NSND), prepared in water or ethanol solution decreased lipid accumulation of 3T3-L1 cells. FSFD in water and ethanol extracts showed higher levels of ginsenosides, in particular, Rh1, Rg2, and Rb1 than NSND, and levels of the three ginsenosides were higher in ethanol extracts than in water extracts. Treatment with FSFD and/or NSND in ethanol extracts significantly regulated $PPAR{\gamma}$, C/$EBP{\alpha}$ and AMPK phosphorylation in 3T3-L1 cells. We verified doubling time of stem cells from both abdominal fat and subcutaneous fat after FSFD and NSND in ethanol and water extracts were added. Although addition of FSFD and NSFD in water extracts had no effects on proliferation, ethanol extracts with FSFD and NSND increased doubling time of stem cells in subcutaneous fat. FSFD and NSND in ethanol extracts more effectively reduced adipogenesis compared to those in water extracts. FSFD in ethanol extracts promoted secretion of anti-inflammatory cytokine such as IL-10 and depressed MCP-1 infiltration in 3T3-L1 preadipocytes co-cultured with RAW264.7 cells. We concluded that FSFD and NSND ethanol extracts may be developed as a functional food for its anti-obesity effect, but anti-inflammatory effect was shown in ethanol extracted FSFD rather than in NSND.

Anti-Obesity Effect of By-Product from Soybean on Mouse Fed a High Fat Diet (고지방 식이로 유도된 비만 마우스에서 대두 부산물인 순물과 침지수의 항비만 효과)

  • Park, Young Mi;Lim, Jae Hwan;Seo, Eul Won
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • Here we study the anti-obesity effects of by-product from soybean on mouse fed high fat diet. The body weight gain, visceral and subcutaneous adipose tissue weight, liver and epididymal adipose tissue weight in freeze-dried soybean-soaking-water (SSW) powder fed group showed lower level than those in high fat diet (HFD) group by determining with weight measuring and histological methods. Also, histological analyses of the liver and fat tissues of SSW grouped mice revealed significantly less number of lipid droplets formation and smaller size of adipocytes compared to the HFD group. Moreover, the levels of total serum cholesterol, LDL-cholesterol and the atherogenic index were decreased in the SSW groups. Especially, in SSW group, the levels of phosphorylation of two lipid oxidation enzymes, adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylasse (ACC) were elevated hence that may activate fatty acid oxidation. But AST and ALT levels were not changed in blood. By micro-CT analysis of abdomen, SSW groups significantly showed a tendency to decrease visceral and subcutaneous fats as well as fat-deposited areas compared to HFD group. Taken together, we suggest that soybean soaking water has a function in ameliorating obesity through inhibiting lipid synthesis as well as stimulating fatty acid oxidation.

Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells

  • Kim, Hwa-Jin;You, Mi-Kyoung;Lee, Young-Hyun;Kim, Hyun-Jung;Adhikari, Deepak;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.12 no.6
    • /
    • pp.494-502
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at $4^{\circ}C$ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$), CCAAT/enhancer-binding proteins ${\alpha}$ (C/EBP ${\alpha}$), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 ($0-75{\mu}g/mL$) or its fractions ($0-50{\mu}g/mL$) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of $PPAR-{\gamma}$, C/EBP ${\alpha}$, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

Anti-obesity and Anti-diabetic Effects of the Fermented Ethanol Extracts from White Jelly Fungus (Tremella fuciformis Berk) with Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76로 발효한 흰목이버섯 (Tremella fuciformis Berk) 추출물의 항비만 및 항당뇨 효과)

  • Yoon, Yeo-Cho;Kim, Byung-Hyuk;Kim, Jung-Gyu;Lee, Jun-Hyeong;Park, YeEun;Park, Hye-Suk;Hwang, Hak-Soo;Kwon, Gi-Seok;Lee, Jung-Bok
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.323-331
    • /
    • 2019
  • White jelly fungus (Tremella fuciformis Berk; TF) has been used as a traditional medicine in Asia; it is known to prevent hypertension, aging, cancer, and arteriosclerosis. This study aimed to investigate the anti-diabetic effects of fermented Tremella fuciformis Berk (FTF) ethanol extracts fermented with L. rhamnosus BHN-LAB 76. We show that FTF increases the ${\alpha}$-glucosidase inhibitory activity and suppress the adipogenesis of 3T3-L1 adipocytes. These inhibitory effects of FTF are accompanied by the regulation of the phosphorylation of AMPK, JNK, and Akt. These data demonstrate that FTF not only inhibits adipogenesis by affecting the adipogenic signaling, but also increases the anti-diabetic effects by regulating the insulin signaling pathway. Therefore, we suggest that the FTF can be used for developing functional food and cosmetics materials.

Effects of steamed Polygonatum odoratum extract on inhibition of adipocyte differentiation and lowing lipid in 3T3-L1 adipocytes (증자 둥굴레 추출물의 3T3-L1 지방세포에서 분화억제 및 지질강하 효과)

  • Kang, Byung Tae;Choe, Won Kyung;Park, Dong Cheol;Kim, Jong Kuk;Park, Mora;Kim, Sung Ok;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate inhibitory effects of steamed Polygonatum odoratum extract (POE) on differentiation and adipogenesis in 3T3-L1 adipocytes. Methods : Polygonatum odoratum (P. odoratum) extract was extracted with ethyl acetate. Total phenolic and flavonoid contents in POE were measured for antioxidant activity. The spectrophotometric method was used to determine the DPPH and ABTS radical scavenging activity and ferric-reducing antioxidant potential (FRAP). MTT assay was examined for cell toxicity, oil red O staining was performed for intracelluar adipogenesis in differentiated 3T3-L1 adipocytes. Western blot analysis for measurement of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), peroxisome proliferator-activated receptor${\gamma}$ ($PPAR{\gamma}$) and AMP-activated protein kinase (AMPK) expressions were performed. Results : The results revealed that POE has antioxidant activities. Contents of total polyphenolics and flavonoids were $50.83{\pm}1.52$ GAE mg/100g dry weight of POE and $17.05{\pm}2.47$ RE mg/100g dry weight of POE, respectively. DPPH radical scavenging activity, and FRAP in 10 mg/ml concentration were $92.1{\pm}0.6%$, $244.8{\pm}9.0{\mu}M$ Fe(II) and ABTS inhibition in 5 mg/ml concentration was $84.8{\pm}4.1%$. Treatment of POE in adipocytes inhibited the differentiation and adipogenesis of 3T3-L1 adipocytes compared to those of vehicle control. Additionally, protein expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, major transcription factor for the adipogenic genes, were significantly decreased compared to those of vehicle control (p<0.05). Futhermore, phosphorylation of AMPK was increased in 3T3-L1 adipocytes treated with POE compared to that of vehicle control (p<0.05). Conclusions : we demonstrate that steamed P. odoratum extract (POE) has potentiating antioxidant activities, inhibits differentiation and lipid accumulation and also induces energy expenditure in adipocytes, which may contribute to antiobesity property.

Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes (Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향)

  • Bakhovuddin Azamov;Yeowon Kang;Chanhee Lee;Wan-Seog Shim;Kwang Min Lee;Parkyong Song
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.227-235
    • /
    • 2024
  • Hepatocyte damage caused by medications or herbal products is one of the important problem when these compounds are chronically administrated. Thus, improving hepatocyte survival during treatment offers a wide range of opportunities. Valproic acid (VPA), a branched short-chain fatty acid derived from naturally occurring valeric acid, is commonly used to treat epilepsy and seizures. Although VPA exerts numerous effects in cancer, HIV therapy, and neurodegenerative disease, its effects on the liver and its mechanism of action have not been fully elucidated. Here, we demonstrated that VPA caused moderate liver cell toxicity and apoptosis. Interestingly, VPA treatment increased transcription levels of PPAR alpha (PPAR-α) and fibroblast growth factor 21 (FGF21) in murine (Hepa1c1c7) hepatoma cells in a time and concentration dependent manner. VPA-induced FGF21 expression was significantly weaker under PPAR-α silencing condition than in cells transfected with non-targeting control siRNA. Subsequent experiments showed that cell viability was significantly lowered when the FGF21 signaling pathway was blocked by FGF receptor antagonist. Finally, we further determined that AMPK phosphorylation was not responsible for VPA-induced FGF21 expression and PPAR-a increments. These results indicate that increases of FGF21 expression alleviate VPA-induced hepatic toxicity, thereby making FGF21 a potential biomarker for predicting liver damage during VPA treatments.