Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.7.1019

Alteration of Lipid Metabolism Related Proteins in Liver of High-Fat Fed Obese Mice  

Seo, Eun-Hui (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
Han, Ying (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
Park, So-Young (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
Koh, Hyong-Jong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
Lee, Hye-Jeong (Department of Pharmacology, Medical Science Research Center, Dong-A University College of Medicine)
Publication Information
Journal of Life Science / v.20, no.7, 2010 , pp. 1019-1026 More about this Journal
Abstract
Obesity and being overweight are strongly associated with the development of metabolic disease such as diabetes, hypertension, dyslipidemia. High-fat diet (HFD) is one of the most important factors which cause obesity. In this study, C57BL/6 mice were treated with a HFD for 22 weeks in order to induce obesity and hyperglycemia. Twenty-two weeks later, body weight and plasma glucose level of the HFD group were significantly increased, compared with the normal diet (ND) group. Intra-peritoneal glucose tolerance test (IPGTT) showed glucose intolerance in the HFD group compared with the ND group. These results confirmed that a HFD induced obesity and hyperglycemia in C57BL/6 mice. Plasma levels of triglyceride (TG) and total cholesterol (TC) were increased in the HFD group compared with the ND group. Hepatic levels of TG and TC were also increased by a HFD. To investigate the alteration of lipid metabolism in liver, proteins which are related to lipid metabolism were observed. Among lipid synthesis related enzymes, fatty acid synthase (FAS) and glycerol phosphate acyl transferase (GPAT) were significantly increased in the HFD group. Apolipoprotein B (apoB) and microsomal triglyceride transport protein (MTP), which are related to lipid transport, were significantly increased in the HFD group. Interestingly, protein level and phosphorylation of AMP-activated protein kinase (AMPK), which is known as a metabolic regulator, were significantly increased in the HFD group compared with the ND group. In the present study we suggest that HFD may physiologically increase the proteins which are related with lipid synthesis and lipid transport, but that HFD may paradoxically induce the activation of AMPK.
Keywords
High fat diet; lipid metabolism; triglyceride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yao, Z. and D. E. Vance. 1988. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263, 2998-3004.
2 Yao, Z., K. Tran, and R. S. McLeod. 1997. Intracellular degradation of newly synthesized apolipoprotein B. J. Lipid Res. 38, 1937-1953.
3 Shoelson, S. E., L. Herrero, and A. Naaz. 2007. Obesity, inflammation, and insulin resistance. Gastroenterology 132, 2169-2180.   DOI
4 Tao, R., F. Ye, Y. He, J. Tian, G. Liu, T. Ji, and Y. Su. 2009. Improvement of high-fat-diet-induced metabolic syndrome by a compound from Balanophora polyandra Griff in mice. Eur. J. Pharmacol. 616, 328-333.   DOI
5 Van Hoek, B. 2004. Non-alcoholic fatty liver disease: a brief review. Scand J. Gastroenterol. 241, 56-59
6 Saha, A. K., P. R. Avilucea, J. M. Ye, M. M. Assifi, E. W. Kraegen, and N. B. Ruderman. 2004 Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem. Biophys. Res. Commun. 314, 580-585.   DOI
7 Wetterau, J. R., R. E. Gregg, T. W. Harrity, C. Arbeeny, M. Cap, F. Connolly, C. H. Chu, R. J. George, D. A. Gordon, H. Jamil, K. G. Jolibois, L. K. Kunselman, S. J. Lan, T. J. Maccagnan, B. Ricci, M. Yan, D. Young, Y. Chen, O. M. Fryszman, J. V. M. Logan, C. L. Musial, M. A. Poss, J. A. Robl, L. M. Simpkins, W. A. Slusarchyk, R. Sulsky, P. Taunk, D. A. Magnin, J. A. Tino, R. M. Lawrence, J. K. Dickson, Jr., and S. A. Biller. 1998. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282, 751-754.   DOI
8 Wilcox, L. J., P. H. R. Barrett, R. S. Newton, and M. W. Huff. 1999. ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of apoB. Arterioscler. Thromb. Vasc. Biol. 19, 939-949.   DOI   ScienceOn
9 Reaven, G. M. 1988. Banting lecture. Role of insulin resistance in human disease. Diabetes 37, 1595-1607.   DOI
10 Mokdad, A. H., E. S. Ford, and B. A. Bowman, W. H. Dietz, F. Vinicor, V. S. Bales, J. S. Marks. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA 289, 76-79.   DOI
11 Mori, S., T. Yamasaki, I. Sakaida, T. Takami, E. Sakaguchi, T. Kimura, F. Kurokawa, S. Maeyama, and K. Okita. 2004. Hepatocellular carcinoma with nonalcoholic steatohepatitis. J. Gastroenterol. 39, 391-396.   DOI
12 Nicol, C. J., M. Adachi, T. E. Akiyama, and F. J. Gonzalez. 2005. ARgamma in endothelial cells influences high fat diet-nducedhypertension. Am. J. Hypertens 18, 549-556.   DOI
13 Pinkney, J. 2002. Prevention and cure of type 2 diabetes, BMJ 325, 232-233.   DOI
14 Ntambi, J. M. 1992. Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J. Biol. Chem. 267, 10925-10930.
15 Olefsky, J. M., O. G. Kolterman, and A. Scarlett. 1982. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 243, E15-E30.
16 Olofsson, S. O., L. Asp, and J. Boren. 1990. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr. Opin. Lipido. 10, 341-346.
17 Postic, C. and J. Girard. 2008. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829-838.   DOI
18 Pullinger, C. R., J. D. North, B. B. Teng, V. A. Rifici, A. E. Ronhild de Brito, and J. Scott. 1989. The apolipoprotein B gene is constitutively expressed in HepG2 cells: regulation of secretion by oleic acid, albumin, and insulin, and measurement of the mRNA halflife. J. Lipid Res. 30, 1065-1077.
19 Hedley, A. A., C. L. Ogden, C. L. Johnson, M. D. Carroll, L. R. Curtin, and K. M. Flegal. 2004. Prevalence of overweight and obesity among US children, adolescents, and adult, 1999-2002. JAMA 291, 2847-2850   DOI
20 Jakobsson, A., R. Westerberg, and A. Jacobsson. 2006. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237-249.   DOI
21 Jamil, H., J. K. Dickson, Jr., C. Chu, M. W. Lago, J. K. Rinehart, S. A. Biller, R. E. Gregg, and J. R. Wetterau. 1995. Microsomal triglyceride transfer protein: specificity of lipid binding and transport. J. Biol. Chem. 270, 6549-6554.   DOI
22 Menendez, J. A., A. Vazquez-Martin, F. J. Ortega, and J. M. Fernandez-Real. 2990. Fatty Acid Synthase: Association with Insulin Resistance, Type 2 Diabetes, and Cancer. Clin. Chem. 55, 425-438.   DOI
23 Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, N. Nishimoto, T. Noguchi, and T. Tanaka. 1990. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur. J. Biochem. 190, 435-441.   DOI
24 Katsurada, A., N. Iritani, H. Fukuda, Y. Matsumura, T. Noguchi, and T. Tanaka. 1989. Effects of nutrients and insulin on transcriptional and post-transcriptional regulation of glucose-6-phosphate dehydrogenase synthesis in rat liver. Biochim. Biophys. Acta. 1006, 104-110.   DOI   ScienceOn
25 Lewin, T. M., S. Wang, C. A. Nagle, C. G. Van Horn, and R. A. Coleman. 2005. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes. Am. J. Physiol. Endocrinol. Metab. 288, E835-E844.   DOI
26 Cianflone, K., Z. Yasruel, M. A. Rodriguez, D. Vas, and A. D. Sniderman. 1990. Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. J. Lipid Res. 31, 2045-2055.
27 Dentin, R., P. D. Denechaud, F. Benhamed, J. Girard, and C. Postic. 2006. Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. J. Nut. 136, 1145-1149.
28 Elshourbagy, N. A., J. C. Near, P. J. Kmetz, G. M. Sathe, C. Southan, J. E. Strickler, M. Gross, J. F. Young, T. N. Wells, and P. H. Groot. 1990. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J. Biol. Chem. 265, 1430-1435.
29 Gordon, D. A. and H. Jamil. 2000. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim. Biophys. Acta. 1486, 72-83.   DOI   ScienceOn
30 Ginsberg, H. N. 1997. Role of lipid synthesis, chaperone proteins and proteasomes in the assembly and secretion of apoprotein Bcontaining lipoproteins from cultured liver cells. Clin. Exp. Pharmacol. Physiol. 24, A29-A32.   DOI
31 Hardie, D. G. 2004. AMP-activated protein kinase: a master switch in glucose and lipid metabolism. Rev. Endocr. Metab. Disord. 5, 119-125.   DOI
32 Hardie, D. G., J. W. Scott, D. A. Pan, and E. R. Hudson. 2003. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546, 113-120.   DOI
33 Haynes, P., S. Liangpunsakul, and N. Chalasani. 2004. Nonalcoholic fatty liver disease in individuals with severe obesity. Clin. Liver Dis. 8, 535-547.   DOI
34 Burnett, J. R., L. J. Wilcox, D. E. Telford, S. J. Kleinstiver, P. H. R. Barrett, R. S. Newton, and M. W. Huff. 1999. Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs. J. Lipid Res. 40, 1317-1327.
35 Berriot-Varoqueaux, N. L. P., A. M. Samson-Bouma, and J. R. Wetterau. 2000. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu. Rev. Nutr. 20, 663-697.   DOI   ScienceOn
36 Bugianesi, E., P. Manzini, S. D'Antico, E. Vanni, F. Longo, N. Leone, P. Massarenti, A. Piga, G. Marchesini, and M. Rizzetto. 2004. Relative contribution of iron burden, HFE mutations and insulin resistance to fibrosis in non alcoholic fatty liver. Hepatology 39, 179-187.   DOI