• Title/Summary/Keyword: AMP activated protein kinase

Search Result 270, Processing Time 0.025 seconds

AMPK-induced mitochondrial biogenesis decelerates retinal pigment epithelial cell degeneration under nutrient starvation

  • Yujin Park;Yeeun Jeong;Sumin Son;Dong-Eun Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • The implications of nutrient starvation due to aging on the degeneration of the retinal pigment epithelium (RPE) is yet to be fully explored. We examined the involvement of AMPK activation in mitochondrial homeostasis and its relationship with the maintenance of a healthy mitochondrial population and epithelial characteristics of RPE cells under nutrient starvation. Nutrient starvation induced mitochondrial senescence, which led to the accumulation of reactive oxygen species (ROS) in RPE cells. As nutrient starvation persisted, RPE cells underwent pathological epithelial-mesenchymal transition (EMT) via the upregulation of TWIST1, a transcription regulator which is activated by ROS-induced NF-κB signaling. Enhanced activation of AMPK with metformin decelerated mitochondrial senescence and EMT progression through mitochondrial biogenesis, primed by activation of PGC1-α. Thus, by facilitating mitochondrial biogenesis, AMPK protects RPE cells from the loss of epithelial integrity due to the accumulation of ROS in senescent mitochondria under nutrient starvation.

Inhibitory Effect of the Ethanol Extract of Rudbeckia laciniata var. hortensis Bailey on Adipocyte Differentiation in 3T3-L1 Cells (겹삼잎국화 에탄올 추출물의 지방세포 분화 억제 효과)

  • Nam, Gun He;Wee, Ji-Hyang;Kim, Sang Yung;Baek, Ji-Young;Kim, Young Min
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1152-1158
    • /
    • 2019
  • Rudbeckia laciniata var. hortensis Bailey is used in home remedy for colic and gastritis in South Korea. Although Rudbeckia laciniata var. hortensis Bailey is used extensively for home remedies, no single study on its efficacy exists. In this study, we investigated the anti-obesity effects of Rudbeckia laciniata var. hortensis Bailey. The anti-obesity effect of a 70% ethanol extract from Rudbeckia laciniata var. hortensis Bailey on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated with an Oil Red O assay, western blot analysis, and mRNA analysis. Compared to the control (only treated with DM), the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly inhibited adipocyte differentiation and intracellular triglyceride (TG) levels at a concentration of $100{\mu}g/ml$. To determine how the TG content was reduced, we measured the level of protein and mRNA expression of obesityrelated agents, such as peroxisome proliferators-activated receptor ${\gamma}$ ($PPAR{\gamma}$), CCAAT/enhancer- binding protein ${\alpha}$ ($C/EBP{\alpha}$), AMP-activated protein kinase (AMPK) phosphorylation, LPL, and FAS. As a result, the 70% ethanol extract of Rudbeckia laciniata var. hortensis Bailey significantly increased the expression of AMPK and decreased the expression of genes related to adipogenesis and fat storage, such as $PPAR{\gamma}$, $C/EBP{\alpha}$, LPL, and FAS.

Studies of Inhibitory Mechanism on Melanogenesis by Partially Purified Asiasari radix in α-MSH Stimulated B16F10 Melanoma Cells (세신추출물이 α-MSH 자극에 의한 B16F10 세포의 멜라닌생성에 미치는 영향)

  • Jang, Ji-Yeon;Kim, Ha-Neui;Kim, Yu-Ri;Kim, Byung-Woo;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1617-1624
    • /
    • 2010
  • Recently, it has been found that Asiasari radix showed a hypopigmenting effect on melanogenesis through activation of mitogen-activated protein kinase (MEK)/extracellular signal-activated kinase (ERK) in B16F10 melanoma cells. However, the hypopigmenting effect of A. radix on the $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH)-stimulated melanogenesis has remained unknown. The purpose of this study was to investigate the inhibitory mechanism of the partially purified A. radix (PPAR)-induced hypopigmentating effects on $\alpha$-MSH-stimulated melanogenesis in B16F10 mouse melanoma cells. PPAR strongly inhibited tyrosinase activity and leads to decreased melanin synthesis in $\alpha$-MSH-stimulated B16F10 melanoma cells. PPAR also decreased the $\alpha$-MSH-induced over-expression of the melanogenic enzymes, tyrosinase, tyrosinase-related protein (TRP)-1, dopachrome tautomerase (Dct) and microphthalmia-associated transcription factor (MITF). We further showed that PPAR inhibits $\alpha$-MSH-induced melanogenesis via phosphorylation of MEK/ERK and PI3K/Akt, and that their activation was blocked by MEK inhibitors, PD98059 and PI3K inhibitors, LY294002 in $\alpha$-MSH-stimulated B16F10 melanoma cells. These results suggest that PPAR inhibits $\alpha$-MSH-induced melanogenesis by activation of MEK/ERK and PI3K/Akt through MITF degradation, which may lead to down-regulation of tyrosinase.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

cAMP Response Element-Binding Protein- and Phosphorylation-Dependent Regulation of Tyrosine Hydroxylase by PAK4: Implications for Dopamine Replacement Therapy

  • Won, So-Yoon;You, Soon-Tae;Choi, Seung-Won;McLean, Catriona;Shin, Eun-Young;Kim, Eung-Gook
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.493-499
    • /
    • 2021
  • Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.

Modulation of ATP-Induced Activation of the Muscarinic $K^+$ Channel Activity by Protein Kinase C

  • Kim, Yang-Mi;Park, Hong-Ki;Han, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • The atrial acetylcholine-activated $K^+\;(K_{ACh})$ channel is gated by the pertussis toxin-sensitive inhibitory G $(G_K)$ protein. Earlier studies revealed that ATP alone can activate the $K_{ACh}$ channel via transphosphorylation mediated by nucleoside-diphosphate kinase (NDPK) in atrial cells of rabbit and guinea pig. This channel can be activated by various agonists and also modulated its function by phosphorylation. ATP-induced $K_{ACh}$ channel activation (AIKA) was maintained in the presence of the NDPK inhibitor, suggesting the existence of a mechanism other than NDPK-mediated process. Here we hypothesized the phosphorylation process as another mechanism underlying AIKA and was undertaken to examine what kinase is involved in atrial cells isolated from the rat heart. Single application of 1 mM ATP gradually increased the activity of $K_{ACh}$ channels and reached its maximum $40{\sim}50$ sec later following adding ATP. AIKA was not completely reduced but maintained by half even in the presence of NDPK inhibitor. Neither ADP nor a non-hydrolyzable ATP analogue, AMP-PNP can cause AIKA, while a non-specific phosphatase, alkaline phosphatase blocked completely AIKA. PKC antagonists such as sphingosine or tamoxifen, completely blocked AIKA, whereas PKC catalytic domain increased AIKA. Taken together, it is suggested that the PKC-mediated phosphorylation is partly involved in AIKA.

  • PDF

Effect of Prunellae Spica on Oxidative Stress and Mitochondrial Dysfunction in the Hepatocyte (하고초(夏枯草)의 간세포에서 항산화 및 미토콘드리아 보호효과)

  • Jang, Mihee;Seo, Hye Lim;Kim, Sang Chan;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • Prunellae Spica, the herbaceous plant in the genus Prunella, is a traditional herbal medicine and has been reported to have diuretic, anti-bacterial and anti-oxidant effects. However, the mechanism of its action was not clearly identified. In the present study, we investigated the hepatoprotective effect of Prunellae Spica extract (PSE) against the damage of mitochondria and death in hepatocyte induced by oxidative stress. Treatment of arachidonic acid (AA)+iron significantly induced oxidative stress and apoptosis in the hepatocytes. However, PSE protected cells and inhibited apoptosis by altering the protein levels such as poly(ADP-ribose) polymerase and pro-caspase 3. Moreover, AA+iron induced reactive oxygen species production and mitochondrial dysfunction, and Both of them were inhibited by PSE treatment. PSE markedly activated AMP-activated protein kinase (AMPK), an important regulator in cell survival. Furthermore, this activation by PSE was mediated with liver kinase B1, a major upstream kinase that phosphorylates Thr 172 of AMPKα, and this activation was associated with its cell protection, as assessed by an experiment of a chemical inhibitor. In conclusion, this study demonstrate that PSE protects hepatocytes against oxidative stress as mediated with activation of LKB1-dependent AMPK pathway.

The effect of different dietary on expression of AMPK and MAPK in rat muscle after a bout endurance exercise (서로 다른 식이 섭취와 일회 지구성 운동 후 쥐 골격근 내 AMPK와 MAPK 발현)

  • Eo, su-ju;Kim, hyo-sik;Lee, mi-sook;Kim, jong-kyu;Lee, jong-sam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.407-408
    • /
    • 2012
  • 요약은 이 연구는 다양한 식이 섭취와 일회 지구성 운동으로 야기되는 근육(백색 비복근) 내 AMP-activated protein kinase(AMPK), Extracellular signal-regulated kinase(ERK 1/2)와 p38 mitogen-activated protein kinase(MAPK)의 신호전달체계를 구명해 보고자 실시되었다. 실험에 사용된 쥐(Sprague-Dawley)는 총 160마리로 크게 일반 탄수화물 식이(CHO; 40마리), 포화지방 식이(SAFA; 40마리), 단일불포화 식이(MUFA; 40마리)와 다불포화 식이(PUFA; 40마리)로 나누어 연구를 진행하였다. 운동 프로그램은 일회 지구성 운동으로 30분 운동 후 5분 휴식의 사이클을 지속적으로 6번 반복하여 총 3시간의 지구성 수영 운동을 실시하였고, 분석을 위한 조직 샘플링은 운동 전, 운동 후 0시간, 1시간, 4시간, 24시간에 걸쳐서 이루어졌다. 연구의 결과는 서로 다른 식이 섭취와 운동에 따른 AMPK의 신호전달 단백질의 발현은 유의한 치이가 나타나지 않았다. 그러나 서로 다른 식이를 섭취한 쥐의 근육에서 ERK 1/2(p<.01)와 p38 MAPK(p<.001)의 신호전달 단백질의 발현은 유의한 차이를 보였다(p<.05). 흥미로운 결과는 운동에 대한 유의한 차이는 AMPK, ERK1/2와 p38 MAPK 모두 유의한 차이를 보이지 않았다는 것이다. 결론적으로 일회 지구성 운동보다 서로 다른 식이의 섭취가 근육 내(백색 비복근)의 대사적 변화를 일으키는데 주도적인 영향을 미칠 수 있음을 시사할 수 있다.

  • PDF

Protein kinase CK2 activates Nrf2 via autophagic degradation of Keap1 and activation of AMPK in human cancer cells

  • Jang, Da Eun;Song, Junbin;Park, Jeong-Woo;Yoon, Soo-Hyun;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.272-277
    • /
    • 2020
  • Protein kinase CK2 downregulation induces premature senescence in various human cell types via activation of the reactive oxygen species (ROS)-p53-p21Cip1/WAF1 pathway. The transcription factor "nuclear factor erythroid 2-related factor 2" (Nrf2) plays an important role in maintaining intracellular redox homeostasis. In this study, Nrf2 overexpression attenuated CK2 downregulation-induced ROS production and senescence markers including SA-β-gal staining and activation of p53-p21Cip1/WAF1 in human breast (MCF-7) and colon (HCT116) cancer cells. CK2 downregulation reduced the transcription of Nrf2 target genes, such as glutathione S-transferase, glutathione peroxidase 2, and glutathione reductase 1. Furthermore, CK2 downregulation destabilized Nrf2 protein via inhibiting autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Finally, CK2 downregulation decreased the nuclear import of Nrf2 by deactivating AMP-activated protein kinase (AMPK). Collectively, our data suggest that both Keap1 stabilization and AMPK inactivation are associated with decreased activity of Nrf2 in CK2 downregulation-induced cellular senescence.