• 제목/요약/키워드: AMOLED displays

검색결과 65건 처리시간 0.019초

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

2.9V~5.6V의 넓은 입력 전압 범위를 가지는 웨어러블 AMOLED용 2-채널 DC-DC 변환기 설계 (Design of 2-Ch DC-DC Converter with Wide-Input Voltage Range of 2.9V~5.6 V for Wearable AMOLED Display)

  • 이희진;김학윤;최호용
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.859-866
    • /
    • 2020
  • 본 논문에서는 2.9 V ~ 5.6V의 넓은 입력 전압 범위를 가지는 웨어러블 AMOLED용 2-채널 DC-DC 변환기를 설계한다. 양전압 VPOS는 과도한 입력전압이 인가된다 하더라도 정상 출력 전압을 생성되는 OPC를 내장하고, 경부하 효율을 제고하기 위한 SPWM-PWM 듀얼모드 및 파워 트랜지스터 3-분할을 적용한 부스트 변환기로 설계한다. 음전압 VNEG는 전력 효율을 높이기 위해 0.5x 인버팅 차지펌프를 이용해 설계한다. 제안된 DC-DC 변환기는 0.18-㎛ BCDMOS 공정으로 설계하였다. DC-DC 변환기는 2.9V~5.6V의 입력 전압에 대해 4.6V의VPOS와 -0.6V~-2.3V의 VNEG 전압을 생성한다. 또한 1mA~70mA 부하전류에서 49%~92%의 전력효율과 최대 20mV의 출력 리플을 가졌다.

SOI 웨이퍼를 이용한 Top emission 방식 AMOLEDs의 스위칭 소자용 단결정 실리콘 트랜지스터 (Single Crystal Silicon Thin Film Transistor using 501 Wafer for the Switching Device of Top Emission Type AMOLEDs)

  • 장재원;김훈;신경식;김재경;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권4호
    • /
    • pp.292-297
    • /
    • 2003
  • We fabricated a single crystal silicon thin film transistor for active matrix organic light emitting displays(AMOLEDs) using silicon on insulator wafer (SOI wafer). Poly crystal silicon thin film transistor(poly-Si TFT) Is actively researched and developed nowsdays for a pixel switching devices of AMOLEDs. However, poly-Si TFT has some disadvantages such as high off-state leakage currents and low field-effect mobility due to a trap of grain boundary in active channel. While single crystal silicon TFT has many advantages such as high field effect mobility, low off-state leakage currents, low power consumption because of the low threshold voltage and simultaneous integration of driving ICs on a substrate. In our experiment, we compared the property of poly-Si TFT with that of SOI TFT. Poly-Si TFT exhibited a field effect mobility of 34 $\textrm{cm}^2$/Vs, an off-state leakage current of about l${\times}$10$\^$-9/ A at the gate voltage of 10 V, a subthreshold slope of 0.5 V/dec and on/off ratio of 10$\^$-4/, a threshold voltage of 7.8 V. Otherwise, single crystal silicon TFT on SOI wafer exhibited a field effect mobility of 750 $\textrm{cm}^2$/Vs, an off-state leakage current of about 1${\times}$10$\^$-10/ A at the gate voltage of 10 V, a subthreshold slope of 0.59 V/dec and on/off ratio of 10$\^$7/, a threshold voltage of 6.75 V. So, we observed that the properties of single crystal silicon TFT using SOI wafer are better than those of Poly Si TFT. For the pixel driver in AMOLEDs, the best suitable pixel driver is single crystal silicon TFT using SOI wafer.

유기 발광 다이오드의 신뢰성 평가기준 (Reliability Assessment Criteria of Organic Light Emitting Diode(OLED))

  • 홍원식;송병석;정해성;임재학
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권2호
    • /
    • pp.131-148
    • /
    • 2009
  • An organic light emitting diode (OLED), also light emitting polymer (LEP) and organic electro luminescence (OEL), is any light emitting diode (LED) whose emissive electroluminescent layer is composed of a film of organic compounds. The layer usually contains a polymer substance that allows suitable organic compounds to be deposited. They are deposited in rows and columns onto a flat carrier by a simple "printing" process. The resulting matrix of pixels can emit light of different colors. Such systems can be used in television screens, computer displays, small, portable system screens such as cell phones and PDAs, advertising, information and indication. OLEDs can also be used in light sources for general space illumination, and large-area light-emitting elements. In this paper, we develop the general guide line of the accelerated life test for assuring B10 life of AMOLED(Active Matrix Organic Light Emitting Diode) and PMOLED(Passive Matrix Organic Light Emitting Diode) which are widely used for display monitor less than 115 mm.

  • PDF

비정질 실리콘의 결정화를 위한 줄 가열 유도 결정화 공정에 대한 열적 연구 (Thermal Investigation of Joule-Heating-Induced Crystallization of Amorphous Silicon Thin Film)

  • 김동현;박승호;홍원의;노재상
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.221-228
    • /
    • 2011
  • 대면적 비정질 실리콘 박막의 결정화는 평판 디스플레이 생산에 있어서 핵심 요소로 꼽힌다. 현재 다양한 결정화 기술들이 연구 되고 있으며 그 중 최근에 소개된 줄 가열 유도 결정화는 수십 마이크로초의 짧은 공정 시간, 대면적 결정화 그리고 국부적인 가열로 기판의 열변형 억제 등의 잇점으로 인해 AMOLED 제작에 있어서 기대되는 기술이다. 본 연구에서는 JIC 공정 중 상변화과정에서의 온도를 이론적으로 해석하고 이를 실험과 비교하였다. 이를 통하여 결정화 메커니즘을 결정하는 임계온도를 in-situ 실험과 수치해석을 통해 밝혀내었다.