• Title/Summary/Keyword: AI-based Platforms

Search Result 81, Processing Time 0.023 seconds

Crowdsourcing Software Development: Task Assignment Using PDDL Artificial Intelligence Planning

  • Tunio, Muhammad Zahid;Luo, Haiyong;Wang, Cong;Zhao, Fang;Shao, Wenhua;Pathan, Zulfiqar Hussain
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The crowdsourcing software development (CSD) is growing rapidly in the open call format in a competitive environment. In CSD, tasks are posted on a web-based CSD platform for CSD workers to compete for the task and win rewards. Task searching and assigning are very important aspects of the CSD environment because tasks posted on different platforms are in hundreds. To search and evaluate a thousand submissions on the platform are very difficult and time-consuming process for both the developer and platform. However, there are many other problems that are affecting CSD quality and reliability of CSD workers to assign the task which include the required knowledge, large participation, time complexity and incentive motivations. In order to attract the right person for the right task, the execution of action plans will help the CSD platform as well the CSD worker for the best matching with their tasks. This study formalized the task assignment method by utilizing different situations in a CSD competition-based environment in artificial intelligence (AI) planning. The results from this study suggested that assigning the task has many challenges whenever there are undefined conditions, especially in a competitive environment. Our main focus is to evaluate the AI automated planning to provide the best possible solution to matching the CSD worker with their personality type.

Improved Transformer Model for Multimodal Fashion Recommendation Conversation System (멀티모달 패션 추천 대화 시스템을 위한 개선된 트랜스포머 모델)

  • Park, Yeong Joon;Jo, Byeong Cheol;Lee, Kyoung Uk;Kim, Kyung Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • Recently, chatbots have been applied in various fields and have shown good results, and many attempts to use chatbots in shopping mall product recommendation services are being conducted on e-commerce platforms. In this paper, for a conversation system that recommends a fashion that a user wants based on conversation between the user and the system and fashion image information, a transformer model that is currently performing well in various AI fields such as natural language processing, voice recognition, and image recognition. We propose a multimodal-based improved transformer model that is improved to increase the accuracy of recommendation by using dialogue (text) and fashion (image) information together for data preprocessing and data representation. We also propose a method to improve accuracy through data improvement by analyzing the data. The proposed system has a recommendation accuracy score of 0.6563 WKT (Weighted Kendall's tau), which significantly improved the existing system's 0.3372 WKT by 0.3191 WKT or more.

A Study on the Storytelling of Web-based MMORTS 'Tribal War' (웹 기반 MMORTS <부족전쟁>의 스토리텔링 연구)

  • Lyou, Chul-Gyun;Lim, Su-Mi
    • Journal of Korea Game Society
    • /
    • v.10 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • Web-based MMORTS has features that distinguish it from traditional client-based games. First, Web-based MMORTS is represented by the combination of graphics and texts. Second, there is parallax agent which has a player and a base town character. This paper written for the purpose of analyzing the storytelling of web-based MMORTS, and from Innogames selected as the subjects of the study. In view of the results so far achieved, the fact, when the player logs in web-based MMORTS, the player takes the experience after some time which had taken by the AI character instead of the player logged out and User Generated Storytelling created from this process, become known. This paper has a meaning for Web-based virtual world which can juxtaposition with routine tasks and can be linked with other platforms.

Interactive Influencer Status and Development Plan (가상 인터렉티브 인플루언서의 현황과 발전 방안)

  • Park, Sung Won
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • Recently, in platforms such as YouTube and Instagram, virtual characters resembling human life become the main characters, produce various contents, breathe with the public, and create the era of virtual humans. For example, existing game characters appear as virtual characters with unique AUs, or AI characters created by reflecting the public's preferences are actively communicating with the public through advertisements and SNS activities. As the consumption of video content through smart devices increases significantly in the post-corona era, virtual influencers are being used as all-round entertainers because there is little risk of personality controversy or production cost. there is a trend In this study, we investigated the characteristics of the case of being active as an influencer among the activities of a virtual character, and how the interactive aspect of the influencer appears by identifying the current situation through major cases. Combining this, based on the analysis of the influence of virtual influencers, the parts that producers should recognize are derived, and the differentiated characteristics of interactive virtual influencers are summarized. In addition, the difficulties of virtual influencers were investigated and problems were identified, and for the development of the content industry, a more favorable method for interaction was presented and suggestions were made to secure inner sincerity.

Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research

  • Sunggeun Han;Jaegwang Lee;Inho Jeon;Jeongcheol Lee;Hoon Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2292-2313
    • /
    • 2023
  • With improving computing performance, various digital platforms are being developed to enable easily utilization of high-performance computing environments. EDISON 1.0 is an online simulation platform widely used in computational science and engineering education. As the research paradigm changes, the demand for developing the EDISON 1.0 platform centered on simulation into the EDISON 2.0 platform centered on data and artificial intelligence is growing. Herein, a data framework, a core module for data-centric research on EDISON 2.0 digital platform, is proposed. The proposed data framework provides the following three functions. First, it provides a data repository suitable for the data lifecycle to increase research reproducibility. Second, it provides a new data model that can integrate, manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary convergence research environment. Finally, it provides an exploratory data analysis (EDA) service and data enrichment using an AI model, both developed to strengthen data reliability and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 data framework, researchers can conduct interdisciplinary convergence research using heterogeneous data and easily perform data pre-processing through the web-based UI. Further, it presents the opportunity to leverage the derived data obtained through AI technology to gain insights and create new research topics.

Character Recognition Algorithm in Low-Quality Legacy Contents Based on Alternative End-to-End Learning (대안적 통째학습 기반 저품질 레거시 콘텐츠에서의 문자 인식 알고리즘)

  • Lee, Sung-Jin;Yun, Jun-Seok;Park, Seon-hoo;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1486-1494
    • /
    • 2021
  • Character recognition is a technology required in various platforms, such as smart parking and text to speech, and many studies are being conducted to improve its performance through new attempts. However, with low-quality image used for character recognition, a difference in resolution of the training image and test image for character recognition occurs, resulting in poor accuracy. To solve this problem, this paper designed an end-to-end learning neural network that combines image super-resolution and character recognition so that the character recognition model performance is robust against various quality data, and implemented an alternative whole learning algorithm to learn the whole neural network. An alternative end-to-end learning and recognition performance test was conducted using the license plate image among various text images, and the effectiveness of the proposed algorithm was verified with the performance test.

Operation Plan for a Customized Convergence Marine Healing Exercise Program for Metabolic Disease Patients (대사질환자를 위한 맞춤형 융합 해양치유 운동프로그램 운영방안)

  • Lee, Si-Woo;Lim, Byung-Gul;Kim, Hyun-Jun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.4
    • /
    • pp.261-275
    • /
    • 2022
  • Purpose : According to the Korean Diabetes Association, the number of metabolic disease patients in Korea is approximately 14.97 million as of 2020;, the prevalence of diabetes among adults over 30 years old is 44.3 %, and the prevalence of diabetes in the elderly over 65 years old is 50.4%. These individuals exposed to the risk of complications. Therefore, the purpose of this study was to determine a distribution method for a customized fusion exercise marine healing program for metabolic disease patients. Methods : We have searched numerous papers concerning artificial intelligence (AI), virtual reality (VR), augmented reality (AR), and marine resources related to marine healing programs that can be introduced in marine healing centers for people with metabolic diseases Results : Through the production of various marine resources and evidence-based exercise programs, the provision of exercise programs using AI, and the development of exercise platforms using AR and VR, we were able to establish guidelines for how to operate marine healing programs at marine healing centers. Conclusion : Korea has much more diverse marine healing resources than other advanced countries in the marine healing industry. However, the development of these resources has only just begun. It is hoped that the studied marine healing program will be of great help to metabolic patients by creating contents that will be implemented in marine healing centers by using the cutting-edge technologies and various marine resources that Korea possesses.

Development of a Game Content Based on Metaverse Providing Decision Tree Algorithm Education for Middle School Students (중학생을 위한 의사결정나무 알고리즘 교육을 제공하는 메타버스 기반 게임 콘텐츠 개발)

  • Hyun, Subin;Kim, Yujin;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.106-117
    • /
    • 2022
  • In 2021, AI basics were introduced in the high school curriculum. There are many worries that the problem of utilization-oriented education will be repeated with the introduction of artificial intelligence education rather than the principles that occurred when ICT was applied to education in the past. Most of the existing AI education platforms focus only on the use of AI. For artificial intelligence education of middle school students, there are difficulties in learning about the process by which artificial intelligence derives results and learning the principles of artificial intelligence algorithms. Recently, as the educational application of metaverse has become a hot topic, research has been started to improve learning achievement by arousing students' immersion and interest. This research developed educational game contents about decision tree algorithm using metaverse as educational contents that can be used in middle school AI education. By applying games to education, it was intended to increase students' interest and immersion in artificial intelligence, and to increase educational effectiveness. In this paper, the educational effectiveness, difficulty, and level of interest were analyzed for pre-service teachers regarding the developed game content. Based on this, a future principle-oriented artificial intelligence education method was suggested.

A Study on the Image/Video Data Processing Methods for Edge Computing-Based Object Detection Service (에지 컴퓨팅 기반 객체탐지 서비스를 위한 이미지/동영상 데이터 처리 기법에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.11
    • /
    • pp.319-328
    • /
    • 2023
  • Unlike cloud computing, edge computing technology analyzes and judges data close to devices and users, providing advantages such as real-time service, sensitive data protection, and reduced network traffic. EdgeX Foundry, a representative open source of edge computing platforms, is an open source-based edge middleware platform that provides services between various devices and IT systems in the real world. EdgeX Foundry provides a service for handling camera devices, along with a service for handling existing sensed data, which only supports simple streaming and camera device management and does not store or process image data obtained from the device inside EdgeX. This paper presents a technique that can store and process image data inside EdgeX by applying some of the services provided by EdgeX Foundry. Based on the proposed technique, a service pipeline for object detection services used core in the field of autonomous driving was created for experiments and performance evaluation, and then compared and analyzed with existing methods.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.