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Abstract 

 
With improving computing performance, various digital platforms are being developed to 
enable easily utilization of high-performance computing environments. EDISON 1.0 is an 
online simulation platform widely used in computational science and engineering education. 
As the research paradigm changes, the demand for developing the EDISON 1.0 platform 
centered on simulation into the EDISON 2.0 platform centered on data and artificial 
intelligence is growing. Herein, a data framework, a core module for data-centric research on 
EDISON 2.0 digital platform, is proposed. The proposed data framework provides the 
following three functions. First, it provides a data repository suitable for the data lifecycle to 
increase research reproducibility. Second, it provides a new data model that can integrate, 
manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary 
convergence research environment. Finally, it provides an exploratory data analysis (EDA) 
service and data enrichment using an AI model, both developed to strengthen data reliability 
and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 
data framework, researchers can conduct interdisciplinary convergence research using 
heterogeneous data and easily perform data pre-processing through the web-based UI. Further, 
it presents the opportunity to leverage the derived data obtained through AI technology to gain 
insights and create new research topics. 
 
 
Keywords: Computational Science, Convergence Research, Data-driven Research, Data 
Framework, Digital Platform 
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1. Introduction 

Computational science uses a method of interpreting mathematical models through computer 
calculations rather than conventional theoretical and experimental methods to gain an 
understanding of a research topic [1]. It involves the development of models and simulations 
that require enormous amounts of computation [2]. Recently, with the rapid development of 
computer performance and cyberinfrastructure, simulations at a previously impossible level 
and scale are possible through large-scale parallel calculations. Further, a new field of R&D 
has emerged through the accumulation and utilization of data, and the paradigm of scientific 
research exploration has shifted from a trial-and-error approach through experiments, theories, 
and simulations to data-driven research. The ever-increasing importance of data sometimes 
leads to a “data flood” [3,4]. Additionally, numerous research and publishing communities 
demand data sharing and public access to data. Increasingly more efforts are being devoted to 
sharing large amounts of data, techniques, and tools generated by research through open 
science and open access to facilitate collaborative and interdisciplinary research [5,6].  

However, the biggest bottleneck to this is the lack of time and resources required to easily 
collect, transform, filter, and upload data. Researchers demand an open science platform where 
they can use existing data and submit new content without requiring technical expertise. 
Consequently, various digital platforms have emerged to render ease in sharing, leveraging, 
and collaborating on research data. Researchers across the world can easily access data, tools, 
and simulation resources via the digital platform. Additionally, they manage their workflow; 
this ease in transferring or replicating data in a computing lab environment allows the 
researchers to focus on scientific research [7,8]. Recently, with the rapid development of 
artificial intelligence (AI) technology, attempts to combine simulation and AI technologies 
have increased in the field of computational science. However, it is significantly difficult for 
domain researchers to use; for example, acquiring a programming language to AI technology 
or building an AI algorithm execution environment. These barriers are also opportunities to 
easily integrate and use AI technologies in research by leveraging digital platforms to uncover 
new insights and research challenges [9,10]. 

Education-research Integration through Simulation On the Net (EDISON) is an online 
simulation platform for teaching and researching in science and engineering professional 
applications; it is widely used by professors, students, and researchers in education, including 
simulation software and educational content. EDISON was developed as a simulation-oriented 
computational science platform and contributed to the formation and activation of the 
computational science community for programs or software that only a small number of 
scientists use for research [11,12]. Currently, EDISON is being further developed in response 
to the demand for a change from a simulation-centered education platform to a data- and AI-
centered research platform. Therefore, in this study, the first version of EDISON is named 
EDISON 1.0, and the new EDISON is named EDISON 2.0. 

During to the operation of EDISON 1.0 in the past decade, 900 types of simulation software, 
800 types of educational content, and considerable amount of data were accumulated to form 
a research community in various fields. Consequently, the need for interdisciplinary 
convergence research on accumulated data has increased [13,14]. Therefore, in this study, 
three tasks were set and solutions to transform simulation-oriented EDISON 1.0 into data-
oriented EDISON 2.0 were proposed, as follows.  
 EDISON 2.0 should be able to support the entire end-to-end research process; this is 

related to research reproducibility [15,16]. Typically, a computer science researcher 
has a research lifecycle in each discipline: data collection, analysis, execution, result 
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comparison, and publication [17]. The results of each stage of the research pipeline 
must be stored and managed to express and execute the entire research process.  

 For interdisciplinary convergence research, data in various fields must be easily 
managed. Further, retrieving, merging, transforming, and processing disparate data 
should be easy. This requires the provision of data models and representations in an 
integrated manner. In this study, integrated metadata were provided for this purpose. 

 It should be possible to reproduce new data by applying the latest AI technology to the 
data, and an environment to analyze large-scale data produced through this should be 
provided [18]. By applying AI technology based on researchers' data to generate new 
derived data, insights can be gained, and opportunities for new research challenges can 
be created. 
 

The remainder of this paper is organized as follows. Section 2 reviews the computational 
science platforms and related data platforms. A general overview of EDISON 2.0 and its data 
framework are described in Section 3. Section 4 describes a data repository that supports the 
data lifecycle, and Section 5 addresses the heterogeneous data integration environment for 
interdisciplinary convergence research. Section 6 addresses the exploratory data analysis 
(EDA) service and data enrichment using AI model. Finally, Section 7 concludes the study 
and discusses future work. 

2. Related Work 
A digital platform is an online platform that enables the exchange of goods, services, and 
information between different users, as well as a digital infrastructure that enables interaction 
and collaboration between users [19,20]. Examples of digital platforms include e-commerce 
platforms such as Amazon, social media platforms such as Facebook, and sharing economy 
platforms such as Airbnb. These platforms are increasing user convenience and transaction 
efficiency while creating new business opportunities [21]. 

Recently, with the rapid development of AI technology, a new digital platform called an AI 
platform has emerged. AI platforms are digital platforms that provide services based on AI. It 
provides machine learning, deep learning, and various data analysis tools to help users develop, 
learn, test, and deploy predictive models. Major companies such as Google, Amazon, and 
Microsoft, with their powerful cloud infrastructure and extensive AI research and development 
capabilities, are leading the development of AI platforms. Amazon SageMaker is a fully 
managed machine learning service on AWS that makes developing, training, and deploying 
machine learning models easy [22]. It also manages all the infrastructure needed to train and 
deploy models, freeing developers to focus on their own work. Microsoft Azure AI provides 
cloud-based AI services [23]. It includes services such as machine learning, natural language 
processing, computer vision, and speech recognition, and it supports the development, training, 
and deployment of machine learning models. Google AI Platform provides AI developers with 
the tools they need to create and train models [24]. It can be used in conjunction with Google's 
powerful data analytics and machine learning services, and supports leading machine learning 
libraries such as TensorFlow, scikit-learn, and XGBoost. These platforms automate or create 
new services that previously required human intervention [9]. 

Computational science platforms are digital platforms that support research in the field of 
computational science, which requires a variety of tools and services not typically supported 
by AI platforms. While AI platforms are primarily used by data scientists to perform complex 
data analysis and modeling, computational science platforms provide the tools and services 
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needed to solve a considerably broader range of scientific problems. With the increasing use 
of AI technologies in computational science, efforts are ongoing to integrate AI tools into 
existing computational science platforms. This integration has the dual benefit of providing 
access to AI tools and leveraging the extensive resources offered by computational science 
platforms. In this paper, we present computational science platforms from a data perspective, 
and in the following sections, we review the major computational science platforms and take 
a close look at how they support data management capabilities and how they are leveraging 
AI technologies. 

2.1 HUBzero, PURR, and MyGeoHub 
HUBzero is a computational science and engineering platform software developed by Purdue 
University and NCSA, with support from the US National Science Foundation (NSF). It is 
actively used as a platform for sharing programs and data in 60 research communities, 
including physics, biology, healthcare, natural science, pharmacy, and climatology [25,26]. 
Users can easily run simulation and modeling tools online using HUBzero, and the visualized 
results can be viewed directly through a web browser. Furthermore, it provides social 
networking capabilities for researchers to collaborate and the ability to store, search, and share 
data. HUBzero is a web-based science and engineering collaboration platform that provides 
various features: simulation-modeling-analysis tool hosting, data publishing, resource sharing, 
community organization and collaboration, data analysis, and machine-learning tools (Jupyter 
Notebook and RStudio). 

The Purdue University Research Repository (PURR) was developed by Purdue University 
as a platform for sharing and managing research data within universities and customized 
HUBzero [27]. Essentially, PURR is a custom instance of HUBzero, which supports scientific 
discovery, learning, and collaboration. Through the PURR platform, researchers can 
disseminate data for public access and discovery. The HUBzero platform has been developed 
without considering metadata or preservation. Therefore, custom metadata implementation 
should be used as a trusted digital repository and has become one of the development goals of 
PURR. PURR has developed custom metadata schemas such as metadata encoding and 
transmission standard (METS), Dublin core initiative metadata (dcterms), metadata object 
description schema (MODS), and preservation metadata implementation strategies (PREMIS). 

MyGeoHub extends HUBzero's file-publishing capabilities to publish DOI assignments and 
services for a set of files, including metadata for all files [28]. Data management provides an 
iData data management infrastructure based on the iRODS data management server, metadata 
extraction from highly structured spatial files, keyword and spatial range searches, and spatial 
file visualization capabilities [29]. MyGeoHub uses MultiSpec to create complex data views 
or perform significant data processing, analysis, or transformation and supports a variety of 
image formats. In addition, it provides several visualization toolkits, including a sandbox 
environment that enables users to overlay geospatial data on world maps, without any 
programming skills, using the GeoBuilder toolkit. A REST API is available in MyGeoHub, 
which allows third-party applications to access the iData file management system and conduct 
all file management operations, such as uploading, downloading, listing, renaming, and 
metadata management of files. It supports the interoperability between gateways that can use 
tools and tools from other gateways. MyGeoHub proposed a sustainability model, provided 
HUBzero's scientific data management, certification and high-performance computing (HPC) 
resource management capabilities, and delivered a comprehensive tool development 
environment to users, allowing them to easily introduce scientific code online. 
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2.2 Materials Project and MPContribs 
The Materials Project, a component of the U.S. Materials Genome Initiative, leverages HPC 
to compute the structural, thermodynamic, electronic, and mechanical properties of more than 
60,000 inorganic compounds using high-throughput ab-initio computations [30,31]. The 
computation outcomes and analysis utilities are shared with the public via contemporary web 
and application interfaces. These outcomes and tools may facilitate the acceleration of 
discovering, designing, and producing advanced materials for applications such as batteries, 
photovoltaics, and semiconductors. However, as the number of users increases beyond 10,000, 
community-driven data submissions are required, which should expand the coverage and 
improve the integrity and quality of diverse datasets. 

MPContribs is a computing software infrastructure that integrates and organizes user-
supplied simulated or measured material data [32]. MPContribs integrates standard data and 
community-provided datasets to build user communities, enables integrated search across 
datasets, and provides processed and interpretable data. Data processing is integrated and 
configured with the existing collaborative graph platform, whereas maintenance and 
formatting are controlled by the user. It provides data retrieval mechanism through a REST 
API and computes aggregates of submitted datasets for use in integrated analytics. 

2.3 AiiDA and Materials Cloud 
A key goal of AiiDA is the complete reproducibility of the computational and resulting data 
obtained through a tight coupling of storage and workflow automation. This allows researchers 
to accelerate the computational science process and eliminate considerable details and 
techniques of error-prone simulations while ultimately providing an open-access model for 
computation [33]. AiiDA proposed the ADES model. The automation model allows the 
daemon to operate in the background and handle interactions with the HPC cluster. In data 
models, calculations and data are represented as graph nodes and heterogeneous data are 
accommodated using entity-attribute-value (EAV) tables. The environment model supports 
visualization, text parsing, and scientific data processing through Python libraries and provides 
AiiDA plugins, Verdi command utilities, scientific workflow, and query tools [34]. The 
sharing model provides the ability to easily share tools and results such as data, code, and 
workflows. 

The aim of Materials Cloud is to establish an ecosystem that supports researchers 
throughout the lifespan of a scientific project while promoting reproducible and equitable 
research findings [35]. AiiDA works similarly to Git's scientific workflow tracking, whereas 
Materials Cloud works similarly to the GitHub platform for sharing, discovering, and 
visualizing anything tracked by AiiDA. Materials Cloud establishes a global schema for 
accumulating all submissions into a single database and adopts a model known as "storage 
repository," which is analogous to GitHub, giving each submission its designated space. It 
provides a comprehensive platform for open science that is accessible to anyone free of charge, 
offering five sections: LEARN, WORK, DISCOVER, EXPLORE, and ARCHIVE. 

2.4 EDISON 1.0 and EDISON-SDR 
EDISON 1.0 is a platform developed as an advanced science education hub development 
project (Education-to-industry integration through simulation on the open platform and Net, 
EDISON) [11]. Based on the cyberinfrastructure composed of large-scale computing and 
network resources, professors, students, researchers, and industrial workers in the field of 
computational science and engineering share and run simulation programs and contents such 
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that anyone can easily conduct education and research. The EDISON platform supports 
software registration and execution, data sharing, and community collaboration functions in 
seven fields (computational thermal fluids, nanophysics, computational chemistry, structural 
mechanics, computational design, computational medicine, and urban environments). The 
tools provided by EDISON are as follows scientific app registration and management, user 
authentication (security), basic portal creation, cyberinfrastructure integration workflow 
execution, and simulation result visualization tools. Fig. 1 illustrates the overall architecture 
of EDISON 1.0. 

EDISON-SDR (Science Data Repository) extends the EDISON 1.0 platform to provide 
services that allow students to learn data-driven research methodologies and easily publish, 
share, search, and analyze computer simulation data [36]. EDISON-SDR provides an 
automated preprocessing framework to solve the problems of complexity, diversity, reliability, 
connectivity, and heterogeneity of computational science data, data expression methods by 
data type, data quality management, data group management, and metadata expression 
technology. 
 

 
Fig. 1. Overall system architecture of EDISON 1.0  

 

2.5 Evaluating Data Capabilities Across Platforms 
In this section, we evaluate and compare data capabilities of the aforementioned computational 
science platforms. The following data features are compared: 
 Does it provide metadata for data integration? Does it provide custom metadata or 

schema authoring tools? 
 Does it support a data lifecycle for research reproducibility? Does it have a separate 

data repository? 
 Does it provide a data analysis environment?  
 Does it provide data analysis capabilities utilizing AI technology? 
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These features were derived while designing the data framework to expand the EDISON 
1.0 platform into a platform for data-centered convergence research. Table 1 shows a 
comparison of data capabilities across platforms. 

The HUBzero platform provides metadata for data storage, search, and sharing, alongside 
the Simulation workflow, modeling tools, and AI technology such as Jupyter notebooks and 
RStudio. However, it does not offer custom metadata tools, a data-driven lifecycle, or a data 
analysis environment. The PURR platform supports customizable metadata and workflow for 
data publishing, but it does not provide separate data lifecycle storage, data analysis 
environment, or AI utilization. MyGeoHub facilitates metadata extraction for spatial files, and 
the iData system supports large file processing and analysis, with Jupyter notebook for AI use; 
however, neither offer data lifecycle features. 

The Materials project platform offers metadata, APIs for inorganic-compound integration, 
and tools for calculating and visualizing materials properties, and it provides data for training 
machine learning algorithms, but it lacks custom schema tools or data lifecycle support. The 
MPContribs platform integrates community-contributed datasets, supports data publishing and 
management workflows, and provides data analysis in pandas data-frame format, but it does 
not offer data lifecycle functionality or AI-related features. 

The AiiDA platform offers metadata for database calculation results, custom-data-type 
support, storage, workflow automation, Python libraries for data analysis, and AI utilization 
through AiiDAlab's Jupyter notebooks. The Materials Project platform uses a global schema 
for unified storage, provides Dublin Core metadata, a "repository" model for reproducibility, 
and Python libraries for both data analysis and machine learning for AI use. 

EDISON 1.0 offers metadata for data storage, sharing, and search; it supports operation 
lifecycle via processing workflow and allows user-installed data analysis modules through its 
Workbench plugin, but it lacks separate data lifecycle functions, storage, and AI capabilities. 
EDISON-SDR provides metadata for data representation and management, supports data 
processing lifecycle via curation, and offers Jupyter Notebook for AI applications, but it does 
not provide separate storage or data analysis features. 

EDISON 2.0 offers unified metadata with customizable schemas, workflow, data curation, 
lifecycle-based storage, and data preprocessing tools for AI models, and it can process large 
data via EDISON clusters. It facilitates AI-technology integration with a framework-
executable environment and built-in AI algorithms for data analysis. 

 
Table 1. Comparison of data capabilities 

Platform Metadata & Schema for 
Integration  

Data Lifecycle for 
Research 

Reproducibility 
Data Analysis Support AI-based Technology 

Provision 

HUBzero 
- Integration Metadata 
(for data storage, search, 
and sharing) 

- Simulation workflow - Modeling & Simulation 
tool  

- Jupyter Notebook 
- RStudio 
- Scientific library  

PURR - DC metadata 
- Custom metadata 

- Data publication 
workflow  - N/A - N/A 

MyGeoHub - DC metadata - N/A - Geospatial data analysis 
tool - Jupyter notebook 

Materials 
Project - Pre-defined metadata - N/A 

- Materials analysis tool 
 (Phase diagram, Crystal 
Toolkit, Reaction 
Calculator) 

- ML library 

MPContribs - Standardized metadata 
- Community metadata 

- Data publication 
workflow - Python library - N/A 
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AiiDA - Custom metadata - Simulation workflow 
- Repository automation - Python library - Python library 

- Jupyter notebook 
Materials 

Cloud 
- DC metadata 
- Global schema 

- Research lifecycle 
- Repository lifecycle - Python library - ML library 

EDISON 1.0 
- Integration Metadata 
(for data storage, search, 
and sharing) 

- Simulation workflow - Workbench plugin - N/A 

EDISON-
SDR 

- Integration Metadata 
(for data representation 
and management) 

- Data curation - N/A - Jupyter notebook 

EDISON 2.0 
Data 

Framework 

- Custom metadata 
- Custom schema 
- Schema authoring tool 

- Simulation workflow 
- Data lifecycle repository 

- Exploratory Data 
Analysis (EDA) service  

- Built-in AI-based data 
analysis algorithm 

- Use AI model by AI 
Framework 

3. EDISON 2.0 Data Framework Overview 
Different observational methods have been used in different fields of scientific research. Fig. 
2 shows the data flow of scientific research using the different approaches. Traditionally, 
experimental scientists produce data by observing subjects with the naked eye, using high-tech 
equipment, or by observing samples through experiments. Theoretical scientists create 
mathematical models of research objects, implement them in simulations, observe the objects, 
and generate data. A data scientist analyzes the observations (or data) collected through 
statistical methods or machine learning. Fig. 2 indicates that scientists from various fields can 
gather in one place because data is the center. This can be a good example showing that data 
play an important role in interdisciplinary research. 

In the field of big data, numerous advances have been made in periodically processing 
incoming data, such as processing sensor data or logging data; the most important function of 
data platform is the storage function that stores and retrieves the data itself. To analyze the 
data, the researchers downloaded the data locally, ran a local analysis program, and published 
the best results in a journal. Therefore, no additional functionality, and the concept of accessing 
or sharing problems that arose during the experiments or analyses were not required. However, 
in the field of computational science, because the size of the data is extremely large, calculation 
optimization or parallel efficiency is important, and storing all repeated data indefinitely is 
impossible. Deciding the data that can be discarded and that should be retained is a critical 
issue. Therefore, when handling data, the different characteristics of general and 
computational science data must be known. Computational science data platforms should 
manage data regarding whether any part of a running RUN fails during a simulation or diverges 
rather than converges in the middle of a computation. Moreover, everything used in research 
scenarios, such as research results, workflow, and jupyter notebook contents, should be 
managed, and functions to search, share, and utilize should be provided. 

As described in the previous section, EDISON 1.0 was initially developed as a simulation-
based educational platform, which transitioned to a research-focused EDISON 2.0 due to 
changing requirements. This new version not only expands upon the functionalities of its 
predecessor but also incorporates three main frameworks: simulation, data, and AI. Table 2 
details these enhancements and additions in EDISON 2.0 based on the primary features 
requested, and Fig. 3 depicts the overall system architecture of this upgraded platform. 

 



2300                                                                             Han et al.: Data Framework Design of EDISON 2.0  
Digital Platform for Convergence Research 

 
Fig. 2. Data flow in scientific data research 

 
Table 2. EDISON 1.0 and 2.0 functionalities 

Framework Required  
Functionality EDISON 1.0 EDISON 2.0 Benefits 

Simulation 
Framework 

- Computational science 
software development 
environment 

- A public dedicated 
development server 

- A per-user container-
based development 
environment 

- Troubleshoot user 
library installation  

- Troubleshoot machine 
dependencies 

- Customize user interface - Workbench and 
workflow UI 

- Workbench, workflow 
UI upgrades  

- Customizable UI: 
Terminal services, 
Custom App, 
JupyterLab, Desktop 
App, etc. 

- A more selective and 
customizable UI 

- Computational science 
software execution 
environment 

- VM-based HPC clusters 
for distributed processing 
of large jobs 

- Cloud environment 
consisting of HPC 
clusters and container-
based K8S clusters 

- Efficiently manage 
resources and run large 
jobs 

Data 
Framework 

- A data repository 
supporting 
reproducibility 

- Unified storage for data 
registration and sharing 

- A repository with data 
lifecycle support 

- Efficiently manage data 
storage and utilization, 
enable research 
reproducibility 

- Heterogeneous data 
integration environments 

- Manage data registration 
based on pre-defined 
data types 

- Schema-based 
heterogeneous data 
integration management  

- Support for standard 
schemas per research 
domain 

- Heterogeneous data with 
custom schema support 

- Advanced data for AI 
models - N/A - Enrich data with AI 

models 

- Enrich data by applying 
the latest user-developed 
AI techniques and 
models to data 

- Exploratory data 
analysis (EDA) 
environments 

- N/A 

- Data analysis service for 
data preprocessing  

- Handling large amounts 
of data through EDISON 
scheduler 

- An easy data analysis 
environment  

- EDA tools for preparing 
input data for AI model  

- Efficient processing of 
large amounts of data 

AI  
Framework 

- Web-based AI model 
development 
environment 

- Jupyter Notebook 

- JupyterLab environment  
- Model registration 
service  

- Data linkage service 

- AI models using shared 
data  

- Sharing AI models  
- Speed up AI model 
development 
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- Web-based AI service 
development 
environment 

- N/A - AI service registration  
- Deploying AI packages 

- Shared AI services can 
be directly utilized for a 
variety of studies 

- Cloud delivery - Working with HPC 
clusters 

- Cloud-based AI model 
training and services  

- Data processing and AI 
training at scale 

 
 

The simulation framework in EDISON 2.0 extends the HPC-cluster-based workbench and 
workflow to the cloud, providing customizable UIs. The data framework encourages research 
reproducibility through lifecycle-reflective storage organization and offers tools for 
exploratory data analysis and preprocessing, thereby reducing total data analysis time. The AI 
framework enhances Jupyter notebooks to JupyterLab, simplifying AI model registration, 
service registration, and package deployment. 

At the heart of EDISON 2.0 is the integration among these frameworks, which facilitates 
data storage, sharing, simulation, and model training. The ability to import AI models within 
the data framework promotes data enrichment, leading to high-quality datasets utilizing 
cutting-edge AI models. The data framework also enables efficient parallel processing of 
extensive datasets through the EDISON scheduler offered by the simulation framework. This 
interconnected structure fosters data-centric integrated research, underscoring the pivotal role 
of data in facilitating interdisciplinary collaboration. 
 

 
Fig. 3. Overall architecture of EDISON 2.0  

4. Data Repository with Data Lifecycle 
As mentioned above, data management in computational science requires a different approach 
than that required in general data management. The parameters used in the experiment may be 
more important than the storage and management of the entire dataset. Researchers have their 
research processes, lifecycles, and pipelines. Essentially, important information at each stage 
of the research must be tracked, stored, and managed. Furthermore, the input parameters are 
more important than the code files used in the experiment or data. Therefore, simplified code 
configuration management may be required instead of version control, which compares all 
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data files. The research lifecycle refers to the process of conducting research through project 
planning, execution, conclusion, publication, and deployment of research results. During the 
research lifecycle, data in the broadest sense are involved, including experimental, 
observational, acquired, and simulated data, and relevant information, artifacts, and original 
sources. The research lifecycle also includes published data, codes, and workflows to promote 
the reproducibility of published results. Fig. 4 shows the USGS science data lifecycle model 
[37, 38]. 

 
Fig. 4. USGS science data lifecycle model 

 

 
Fig. 5. EDISON 2.0 data repository 

 

The data generated during the research lifecycle automatically creates a data lifecycle. As 
the importance of sharing data is emphasized, the data lifecycle is becoming an important 
factor. In the data lifecycle model, the data generated by the research lifecycle are planned, 
collected, processed, analyzed, preserved, published, and shared for reuse by others.  

In addition to these activities, documenting workflow processes, providing metadata, and 
backing data should be performed continuously at all stages of the data lifecycle. Fig. 5 shows 
the application of the EDISON 2.0 data repository to the USGS science data lifecycle model. 
In data-driven research, data are not fixed but undergo a process of changing into various forms 
through research or experimentation. Essentially, it follows the lifecycle of data collection, 
transformation, analysis, and sharing, respectively [39]. Raw data are converted into more 
valuable data through the lifecycle and serviced, and data that have reached the end of their 
lifespan are stored as an archive or derived through new data processing techniques and used 
as raw data. The EDISON 2.0 data repository applies these data attributes and includes the 
configuration management of the data accumulated at each stage. The states of the data in the 
data repository are as follows: 
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Raw data. These refer to the first data registered by the researcher or collected from the system, 
and refers to the original data that has not changed in its initial state. 
Processed data. Although raw data are meaningful in their right, researchers typically process 
them for experiments or analysis software. The processed data can be generated by any number 
of algorithms or software used by researchers.  
Analysis data. These refer to the data generated from analyzing the software used by the 
researcher. This data, created mid-research and easily discarded in the past, is now considered 
critical for AI-driven research.  
Service data. Service data refer to the data published as the final research results. These data 
are important for the reproducibility of research. Additionally, they serve as an archive when 
service publications expire. Recently, service data have been converted into recycled data for 
interdisciplinary research and are being used as important data for convergence research, along 
with various heterogeneous data. 

Data repositories designed around the research and data lifecycles enable researchers to 
capture the data generated at each stage of the research process. Further, they have the 
advantage of being able to understand the progress of research and realize the reproducibility 
of research through data monitoring and easy data management. 

5. Heterogeneous Data Integration Environment 
Typically, in data retrieval, the important factor is title matching; however, in computational 
science, it can be the information in the content inside the data. It is about how accurately 
hidden information can be found in computational science data. Particularly, when searching 
for heterogeneous computational data in various fields, the entire search target data must be 
generalized; however, generalizing data with different characteristics is challenging. One 
convenient approach to achieve this is if researchers can easily extract and view the data they 
want to see, such as by collecting specific variants from an entire dataset or classifying data 
by unique properties in metadata. A platform capable of grouping data in this manner, 
providing schemas suitable for queries of researchers in each field, and enabling easy 
collaboration among expert groups can endow researchers with the advantages of convenient 
searching and significantly high analysis efficiency. 

EDISON 1.0 provides software from seven specialized centers and heterogeneous data by 
field. For interdisciplinary convergence research on heterogeneous data, a new data model that 
can integrate and manage the data is required. To this end, EDISON 2.0 designed new 
integrated metadata by defining common metadata, characteristic metadata, and schema. Fig. 
6 shows the integrated metadata proposed in this study. 

 
Fig. 6. Integrated metadata 
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Common metadata represent basic information for representing all the collected data. For 
example, data name, data description, creation date, and author are included. Common 
metadata consist of basic and additional metadata. Basic metadata consist of information that 
should be provided when registering data based on the Dublin core metadata [40]. Additional 
metadata consist of various elements required for open data and open access, such as 
proprietary information, related information, file information, and intelligence information. 
Particularly, intelligent information (or smart information) is data extracted through artificial 
intelligence technology and can be used as important information for interdisciplinary 
convergence research. Table 3 lists common metadata. 
Characteristic metadata represent information that expresses different characteristics that are 
considered important in each research field. As each research field has different types of data 
or characteristics of interest, the “Data Type” is defined and used. The data types are used as 
follows. (1) It serves as a data schema and is used for standardized data entry restrictions and 
data validation. (2) A visualization screen can be created using the “Data Type Design Tool.” 
Fig. 7 shows a visualization screen using the data-type definition and data-type design tool for 
OQMD data [41]. 
 

Table 3. Common metadata 
Information Metadata 

name Description Metadata 
name Description Metadata 

name Description 

Basic Title dataset name Description description Keyword keyword 
Language Language Date creation date Category dataset category 

Proprietary 

Creator data creator Contributors contributors Provider provider 

License license Geospatial 
Coverage collection area Visibility disclosure 

Publish date publish date  

Relational 

Source related data Source ID related data id DOI digital object 
identifier 

RID national 
researcher ID SID 

science and 
technology 

standard 
classification ID 

NTISID NTIS ID 

DMP 
data 

management 
plan 

JID Journal ID EID experiment ID 

File 
Data type data type File format file format Dataset 

Info 
file 

configuration 

RPAS file status Version file version Q score data 
qualification 

Intelligence 
Auto ext auto-extract Auto cls auto-

classification Auto rel auto-relation 

Auto rec auto-
recommend  
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Fig. 7. OQMD data type definition and view 

 
EDISON 2.0 configures a heterogeneous data integration environment based on integrated 
metadata and uses it in data standardization, data verification, data processing automation, 
integrated search, and data quality management modules. Fig. 8 shows the heterogeneous data 
integration environment of EDISON 2.0. 
 

 
Fig. 8. Data integration environment 

 
In a heterogeneous data-integration environment, researchers can conduct data-driven research 
by selecting well-structured data types suitable for their research. Fig. 9 shows the DFT 
simulation process based on the XSF data type in EDISON 2.0. The DFT simulation work can 
be divided into three modules: structure builder, simulator, and analyzer. Considering these 
modules as one unit, each module can be added based on the purpose of the simulation, and 
data suitable for the researcher can be produced by linking the inputs and outputs. 
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Fig. 9. DFT simulation using the user-defined data type 

 
Based on the research, characteristic data types can be created for various heterogeneous 

data, and features based on data types can be automatically extracted for data-driven 
simulation or analysis.  

6. EDA Service and Data Enrichment using AI Model 
Table 4. EDA Service functions 

Pipeline Function Description 

Load 
From Local Loads local files from the user’s PC 
From SDR Loads data files from the Science Data Repository 

From Remote Loads data files using an external FTP or API 

Explore 

All Data Displays all read data 
Top-N Displays N data from the top of the file 

Bottom-N Displays N data from the bottom of the file 
Range Shows data in the range (M, N) position 

Clean 
Missing data Handles missing data 

Outliers Handles outliers 

Transform 

Label Encoding Transforms the category variables using a label encoding 
One-hot Encoding Transforms the category variables using a one-hot encoding 
Standard Scaling Transforms data using a standard scaling 
MinMax Scaling Transforms data using a minmax scaling 

Enrich 
Expert-based Performs human-based data enrichment 
Rule-based Performs the built-in algorithmic approach 
AI-based Loads and run the AI model 
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Select 
Sampling Extracts sample data 
Merging Merges two files 

Split Splits the data by a given ratio 

Visualize 

Heatmap Visualizes data heatmap 
Missing bar Visualizes missing data 

Box plot Visualizes box plot 
Feature Importance Calculates the feature importance and represents it as a graph 

Save To SDR Saves a result file to the Science Data Repository 

 
When using machine learning algorithms to analyze data, the most time-consuming and 

challenging part is cleaning and organizing data [42]. Even if we have the best AI training 
model, it will not perform well with poorly preprocessed data, and the accuracy of the model 
will decrease. The EDISON 2.0 data framework provides EDA services to support data 
preprocessing functions. Table 4 lists the functions supported by the EDA service [43,44]. 
Data preprocessing does not end with one or two functions. It is a long and tedious task that is 
performed by repeating a series of operations such as data loading, exploring, cleaning, 
transforming, enriching, selecting, and saving. During the data-processing pipeline, 
visualization checks are essential to ensure that the data have been appropriately cleaned. The 
EDA service simplifies this process by defining pipeline-like functions, including handling 
missing data and outliers, using techniques such as filling in constant values or removing rows 
or columns [45]. 
 

 
Fig. 10. Data-enrichment example 

 
Data-driven interdisciplinary convergence research extracts and predicts insights from data 

by combining expertise in various fields. In particular, the unique meaning of individual data 
must be determined; however, as AI technology advances, accumulating a large amount of 
data and understanding the meaning of the entire data is more important. To this end, the 
EDISON 2.0 data framework provides an environment that can support data enrichment by 
applying the latest AI technology to large-scale data accumulated in a data lifecycle-based data 



2308                                                                             Han et al.: Data Framework Design of EDISON 2.0  
Digital Platform for Convergence Research 

repository. Researchers can perform data enrichment during data preparation before full-scale 
software execution. Data enrichment can significantly improve the accuracy and value of data 
and yield more reliable research results. Fig. 10 shows an example of performing feature 
generation among the data enrichment functions in the EDA service. This service provides 
three feature generation functions as follows: 

Expert-based function: This is a human-based feature generation method. The person who 
knows the data best, that is, the expert, selects the features that need to be enriched in the data 
and the parameter options, and then generates new features. 

Rule-based function: It is a built-in implementation of a well-known machine learning 
algorithm. This feature can be used when we do not know the data well or want to use a 
machine learning algorithm to gain new insights. The current implementation uses the 
AutoFeat package [46].  

AI model-based function: This generates features using AI models registered in the AI 
framework of EDISON 2.0. When researchers register high-performing AI models in an AI 
framework, users of the EDA service can load those models and directly apply them to their 
own data. This has a significant advantage of allowing easy and rapid utilization of the latest 
technologies. 

New features created through these three methods can be evaluated for their suitability in 
the model using the feature importance function. Using the feature importance function, we 
can determine which features are important in the newly created data and obtain the accuracy 
or root mean squared error (RMSE) for the machine learning model. The machine learning 
algorithm implemented in feature importance uses LightGBM [47]. 
 

 
Fig. 11. Data enrichment example 

 
Fig. 11 show the results of using the above three data enrichment techniques using the 

Boston housing dataset [48,49]. The baseline method shows the state when no data enrichment 
is applied. In this case, the number of features in the data is 13. The expert-based function has 
15 features, rule-based function (AutoFeat algorithm) has 21 features, and AI model-based 
function has 540 features, which is more than 40 times more features than that of the baseline. 
Because we are dealing with a regression problem to predict house prices, we use the RMSE 
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score [50]. As can be observed in the figure, the RMSE score decreases as the number of 
features increases. This indicates that the AI model-based method has better data. However, 
results may vary depending on the situation. The right-side image demonstrates the feature 
importance of each method, aiding users in discerning vital data features for problem-solving. 
Consequently, the EDISON 2.0 EDA service facilitates data enrichment using AI models, 
thereby enabling the creation of superior datasets for AI-model training. 

Fig. 12 illustrates the interaction of the data framework with the AI and simulation 
frameworks. The data framework is enhanced by the ability to import AI models from the AI 
framework's registry, expanding its capacity for AI-based data enrichment functions such as 
auto-extraction, derived data generation, auto-classification, data labeling, and more. 
Additionally, the data framework can operate not just on a local server but also on the EDISON 
cloud, which is currently being developed. The EDISON scheduler facilitates this, enabling 
processing of large data volumes using EDISON cloud clusters. 
 

 
Fig. 12. Interactions between frameworks example 

7. Conclusion 
As the importance of data increases and AI technology advances, the research paradigm is 
changing and various digital platforms are being created to meet these needs. In the field of 
computational science with a large amount of computer computation, various platforms are 
being used to develop models and simulations through large-scale parallel computation. The 
platform makes it easy for researchers to use large computing resources and allows them to 
share and collaborate on the large-scale data, techniques, and tools used in their research. In 
particular, the initial simulation and simulation-driven platforms are changing and developing 
into data-driven and AI-driven platforms. 

HUBzero was created as a web-based science and engineering collaboration platform and 
developed the PURR platform for data sharing and management and the MyGeoHub platform 
for enhancing metadata and file management capabilities. The Materials Project was created 
to distribute computational results and analysis tools for materials data, and the MPContribs 
platform was developed to improve the data integration and search capabilities. AiiDA was 
created as a platform for research reproducibility by tracking scientific workflows, and the 
Materials Cloud was developed to share, search, and visualize everything tracked by AiiDA. 
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EDISON 1.0 was developed as an online simulation platform created for educational and 
research purposes in scientific and engineering professional applications to form and enable a 
large computational science community. Recently, however, there has been a growing demand 
for a shift from a simulation-centered education platform to a data- and AI-centered research 
platform. In this study, the most central data framework was proposed to develop EDISON 
1.0, which is simulation-centered, into EDISON 2.0, which is a data-centered research 
platform. First, the proposed framework provides a data repository suitable for the data 
lifecycle. Researchers have the advantage of increasing the reproducibility of their research by 
managing the data generated at each stage. Second, it provides a heterogeneous data-
integration environment. A new data model for the integration, management, search, and 
utilization of heterogeneous data and an interdisciplinary convergence research environment 
using data-centered heterogeneous data were proposed. Finally, it supports the EDA service 
and data enrichment using AI model. It utilizes the latest AI technology to generate new 
derivative data from accumulated data and provides an environment where data can be easily 
explored and refined through EDA services. This provides researchers without IT expertise 
the opportunity to quickly process data and gain insights from data in other fields to conduct 
new and challenging research. The data framework of EDISON 2.0 will continue to develop 
its functions through data-driven interdisciplinary convergence research. 

EDISON 2.0 excels at integrating and processing heterogeneous data, but data quality is 
limited by the data providers. Therefore, future work is to continuously improve data quality 
without relying on data providers. The purpose is to increase the reliability of research results 
by managing everything from data collection to predefined quality rules with an automated 
system. 
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