• Title/Summary/Keyword: AI platform

Search Result 369, Processing Time 0.025 seconds

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.

ETRI AI Strategy #4: Expanding AI Open Platform (ETRI AI 실행전략 4: AI 개방형 플랫폼 제공 확대)

  • Kim, S.M.;Hong, A.R.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.36-45
    • /
    • 2020
  • The method and process of research and development (R&D) is changing when we develop artificial intelligence (AI), and the way R&D results are dispersed is also changing. For the R&D process, using and participating in open-source ecosystems has become more important, so we need to be prepared for open source. For product and service development, a combination of AI algorithm, data, and computing power is needed. In this paper, we introduce ETRI AI Strategy #4, "Expanding AI Open Platform." It consists of two key tasks: one to build an AI open source platform (OSP) to create a cooperative AI R&D ecosystem, and another to systematize the "x+AI" open platform (XOP) to disperse AI technologies into the ecosystem.

The Direction of AI Classes using AI Education Platform

  • Ryu, Mi-Young;Han, Seon-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2022
  • In this paper, we presented the contents and methods of AI classes using AI platforms. First, we extracted the content elements of each stage of the AI class using the AI education platform from experts. Classes using the AI education platform were divided into 5 stages and 25 class elements were selected. We also conducted a survey of 82 teachers and analyzed the factors that they acted importantly at each stage of the AI platform class. As a result of the analysis, teachers regarded the following contents as important factors for each stage that are AI model preparation stage (the learning stage of the AI model), problem recognition stage (identification of problems and AI solution potential), data processing stage (understanding the types of data), AI modelingstage (AI value and ethics), and problem solvingstage (AI utilization in real life).

A Study on Experts' Perception Survey on Elementary AI Education Platform (초등 AI 교육 플랫폼에 대한 전문가 인식조사 연구)

  • Lee, Jaeho;Lee, Seunghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.483-494
    • /
    • 2020
  • With the advent of the 4th Industrial Revolution, interest in AI education is increasing. In order to cultivate talented people with AI competencies who will lead the future, AI education must be conducted in a sound manner at the school site. Although AI education is being conducted at home and abroad, it was determined that the role of the AI education platform is important to implement better AI education, so this study investigated the perception of experts on the AI education platform. A perception survey was conducted based on five criteria: teaching and learning management, educational contents, accessibility, performance of AI education platform, and level suitability of elementary school students. As a results, the number of 103 educational experts selected 'Entry' as the most proper platform among the eight platforms - 'Machine learning for Kids', 'Teachable Machine', 'AI Oceans(code.org)', 'Entry', 'Genie Block', 'Elice', 'mBlock' and etc. Analysis shows that this is because 'Entry' provides quality educational content, has convenient accessibility, is easy to manage teaching and learning, as well as an AI education platform suitable for the level of elementary school. In order to apply various AI education platforms to the school field, it is necessary to train teachers in AI-related training to train them as AI education experts, and to continuously provide opportunities to experience AI education platforms. In this study, there are limitations to what is called 'a population perception survey'. because only 103 people were surveyed, and most of the experts are working in a specific area(Gyeonggi-do). In the future, it is judged that research targeting experts at the national level should be conducted to supplement these limitations.

The Role and Effect of Artificial Intelligence (AI) on the Platform Service Innovation: The Case Study of Kakao in Korea (플랫폼 서비스 혁신에 있어 인공지능(AI)의 역할과 효과에 관한 연구: 카카오 그룹의 인공지능 활용 사례 연구)

  • Lee, Kyoung-Joo;Kim, Eun-Young
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.175-195
    • /
    • 2020
  • The development of platform service based on the information and communication technology has revolutionized patterns of commercial transactions, driving the growth of global economy. Furthermore, the radical advancement of artificial intelligence(AI) presents the huge potential to innovate almost all the industrial and economic activities. Given these technological developments, the goal of this paper is to investigate AI's impact on the platform service innovation as well as its influence on the business performance. For the goal, this paper presents the review of the types of service innovation, the nature of platform services, and technological characteristics of leading AI technologies, such as chatbot and recommendation system. As an empirical study, this paper performs a multiple case study of Kakao Group which is the leading mobile platform service with the most advanced AI in Korea. To understand the role and effect of AI on Kakao platform service, this study investigated three cases, including chatbot agent of Kakao Bank, Smart Call service of Kakao Taxi, and music recommendation system of Kakao Mellon. The analysis results of the case study show that AI initiated innovations in platform service concepts, service delivery, and customer interface, all of which lead to a significant decrease in the transaction costs and the personalization of services. Finally, for the successful development of AI, this research emphasizes the significance of the accumulation of customer and operational data, the AI human capital, and the design of R&D organization.

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF

A Study on Finding Emergency Conditions for Automatic Authentication Applying Big Data Processing and AI Mechanism on Medical Information Platform

  • Ham, Gyu-Sung;Kang, Mingoo;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2772-2786
    • /
    • 2022
  • We had researched an automatic authentication-supported medical information platform[6]. The proposed automatic authentication consists of user authentication and mobile terminal authentication, and the authentications are performed simultaneously in patients' emergency conditions. In this paper, we studied on finding emergency conditions for the automatic authentication by applying big data processing and AI mechanism on the extended medical information platform with an added edge computing system. We used big data processing, SVM, and 1-Dimension CNN of AI mechanism to find emergency conditions as authentication means considering patients' underlying diseases such as hypertension, diabetes mellitus, and arrhythmia. To quickly determine a patient's emergency conditions, we placed edge computing at the end of the platform. The medical information server derives patients' emergency conditions decision values using big data processing and AI mechanism and transmits the values to an edge node. If the edge node determines the patient emergency conditions, the edge node notifies the emergency conditions to the medical information server. The medical server transmits an emergency message to the patient's charge medical staff. The medical staff performs the automatic authentication using a mobile terminal. After the automatic authentication is completed, the medical staff can access the patient's upper medical information that was not seen in the normal condition.

Exploring the experience of AI education platform using ARCS model for elementary school pre-service teachers (초등 예비교사를 위한 ARCS 모델 활용 인공지능 교육 플랫폼 경험 탐구)

  • Sung, Younghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.199-204
    • /
    • 2021
  • Along with the development of technology in the fourth industrial revolution, the fields that can apply artificial intelligence technology are rapidly increasing. In order to improve computational thinking, overseas countries such as the U.S. and the U.K. are already using various AI education platforms to provide artificial intelligence education. Therefore, there is an increasing need for elementary school pre-service teachers in Korea to strengthen their AI education capabilities along with the existing software education. However, it may be difficult for learners with low levels of programming experience and AI education experience to choose an AI education platform that can sustain their learning motivation. Therefore, in this study, the factors related to learning motivation in the AI education platform were explored using the ARCS model. Through this, we present the factors required by the AI education platform for motivation and sustain of learning.

  • PDF

Understanding MyData-Based Platform Adoption for SW·AI Education & Training Programs

  • Hansung Kim;Sae Bom Lee;Yunjae Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.269-277
    • /
    • 2024
  • This study aims to explore the key factors for the systematic development and activation of a MyData-based platform for SW·AI education and training programs recently initiated by the government. To achieve this, a research model based on the Value-based Adoption Model (VAM) was established, and a survey was conducted with 178 participants who had experience in SW·AI education and training programs. The research model was validated using confirmatory factor analysis and Partial Least Squares Structural Equation Modeling (PLS-SEM). The main findings of the study are as follows: First, transparency and self-determination significantly influenced perceived benefits, while technical effort and security significantly influenced perceived risks. Second, perceived benefits positively affected the intention to use the platform, whereas perceived risks did not show a significant impact. Based on these results, this study suggests implications for the systematic development and activation of a MyData-based platform in the field of SW·AI education and training.

Artificial Intelligence and the Virtual Multi-Door ODR Platform for Small Value Cross-Border e-Commerce Disputes

  • Chung, Yongkyun
    • Journal of Arbitration Studies
    • /
    • v.29 no.3
    • /
    • pp.99-119
    • /
    • 2019
  • In recent times, the volume of cross-border e-commerce has witnessed an upward trend and has been accompanied by increased disputes, with cross-border e-commerce being characterized mainly by low value and large volume issues. For this reason, Online Dispute Resolution (ODR) was formed to carry out dispute resolutions in cross-border e-commerce. A virtual multi-door ODR platform for small value, cross-border disputes in e-commerce is then proposed in this paper. For a couple of decades, researchers have tried to employ Artificial Intelligence (AI) to Law. However, it turns out that they were faced with a couple of obstacles to integrate AI to Law since it is highly difficult to program AI to process the common sense of a human being. For example, AI cannot assimilate the affective side of a human being, and it is problematic to integrate a human being's common sense into the AI system. Considering this situation, this study puts forward an ODR model for cross-border e-commerce in the evolutionary perspective.