• Title/Summary/Keyword: AI in manufacturing

Search Result 143, Processing Time 0.024 seconds

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.

Development of Workplace Risk Assessment System Based on AI Video Analysis

  • Jeong-In Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 2024
  • In this paper, we develop 'the Danger Map' of a workplace to identify risk and harmful factors by analyzing images of each process within the manufacturing plant site using artificial intelligence (AI). We proposed a system that automatically derives 'the risk and safety levels' based on the frequency and intensity derived from this Danger Map in accordance with actual field conditions and applies them to similar manufacturing industries. In particular, in the traditional evaluation method of manually evaluating the risk of a workplace using Excel, the risk level for each risk and harmful factor acquired from the video is automatically calculated and evaluated to ensure safety through the system and calculate the safety level, so that the company can take appropriate actions accordingly. and measures were prepared. To automate safety calculation and evaluation, 'Heinrich's law' was used as a model, and a 5X4 point evaluation scale was calculated for risky behavior patterns. To demonstrate this system, we applied it to a casting factory and were able to save 2 people the time and labor required to calculate safety each month.

The Suggestion for Successful Factory Converging Automation by Reviewing Smart Factories in German (스마트 팩토리 사례를 통한 성공적 공장 융합 자동화 방안 도출)

  • Jeong, Tae-Seog
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.189-196
    • /
    • 2016
  • The ultimate goal of this study is to investigate the cases with respect to smart factory that has been introduced by German government. To do this, the study suggest implications for manufacturing version 3.0 that is one of manufacturing revolution agendas in Korea. The main point of smart factory is the convergence between manufacturing and information and communications technologies such as CPS(Cyber-Physical Systems), MES(Manufacturing Execution Systems), 3D Printer, AI(Artificial Intelligence), and so forth. It is hard to accomplish a complete manufacturing automation. In fact, German government had experienced the failure in pursuing the smart factory agenda. But now the agenda is gradually realized by a variety of success stories from German. Thus, this study is to investigate the well-known success stories that came from German.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

AI Advisor for Response of Disaster Safety in Risk Society (위험사회 재난 안전 분야 대응을 위한 AI 조력자)

  • Lee, Yong-Hak;Kang, Yunhee;Lee, Min-Ho;Park, Seong-Ho;Kang, Myung-Ju
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.22-29
    • /
    • 2020
  • The 4th industrial revolution is progressing by country as a mega trend that leads various technological convergence directions in the social and economic fields from the initial simple manufacturing innovation. The epidemic of infectious diseases such as COVID-19 is shifting digital-centered non-face-to-face business from economic operation, and the use of AI and big data technology for personalized services is essential to spread online. In this paper, we analyze cases focusing on the application of artificial intelligence technology, which is a key technology for the effective implementation of the digital new deal promoted by the government, as well as the major technological characteristics of the 4th industrial revolution and describe the use cases in the field of disaster response. As a disaster response use case, AI assistants suggest appropriate countermeasures according to the status of the reporter in an emergency call. To this end, AI assistants provide speech recognition data-based analysis and disaster classification of converted text for adaptive response.

  • PDF

Development of Cloud based Data Collection and Analysis for Manufacturing (클라우드 기반의 생산설비 데이터 수집 및 분석 시스템 개발)

  • Young-Dong Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.216-221
    • /
    • 2022
  • The 4th industrial revolution is accelerating the transition to digital innovation in various aspects of our daily lives, and efforts for manufacturing innovation are continuing in the manufacturing industry, such as smart factories. The 4th industrial revolution technology in manufacturing can be used based on AI, big data, IoT, cloud, and robots. Through this, it is required to develop a technology to establish a production facility data collection and analysis system that has evolved from the existing automation and to find the cause of defects and minimize the defect rate. In this paper, we implemented a system that collects power, environment, and status data from production facility sites through IoT devices, quantifies them in real-time in a cloud computing environment, and displays them in the form of MQTT-based real-time infographics using widgets. The real-time sensor data transmitted from the IoT device is stored to the cloud server through a Rest API method. In addition, the administrator could remotely monitor the data on the dashboard and analyze it hourly and daily.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

A Case Study of Human-AI Co-creation(HAIC) in Fashion Design (패션 디자인에서의 인간-AI 공동창조(HAIC) 사례 연구)

  • Kyunghee Chung;Misuk Lee
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.141-162
    • /
    • 2023
  • With the prospect that integrating creative AI in the fashion design field will become more visible, this study considered the case of creative fashion design development through Human-AI Co-creation (HAIC). Methodologically, this research encompasses a literature review and empirical investigations. In the literature review, the fashion design and creative HAIC processes, and the possibilities of integrating AI in fashion design were considered. In the empirical study, based on the case analysis of generating fashion design through HAIC, the HAIC type according to the role and interaction method, and characteristics of humans and AI was considered, and the HAIC process for fashion design was derived. The results of this study are summarized as follows. First, HAIC types in fashion design are divided into four types: AI-driven passive HAIC, human-driven passive HAIC, flexible interaction-based HAIC, and integrated interaction-based value creation HAIC. Second, the stages of the HAIC process for creative fashion design can be broadly divided into semantic data integration, visual ideation, design creation and expansion, design presentation, and design/manufacturing solution and UX platform creation. Third, in fashion design, HAIC contributes to human ability, enhancement of creativity, achievement of efficient workflow, and creation of new values. This research suggests that HAIC has the potential to revolutionize the fashion design industry by facilitating collaboration between humans and AI; consequently, enhancing creativity, and improving the efficiency of the design process. It also offers a framework for understanding the different types of HAIC and the stages involved in the creative fashion design process.