• Title/Summary/Keyword: AI Technology

Search Result 2,564, Processing Time 0.028 seconds

AI Technology Analysis using Partial Least Square Regression

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.109-115
    • /
    • 2020
  • In this paper, we propose an artificial intelligence(AI) technology analysis using partial least square(PLS) regression model. AI technology is now affecting most areas of our society. So, it is necessary to understand this technology. To analyze the AI technology, we collect the patent documents related to AI from the patent databases in the world. We extract AI technology keywords from the patent documents by text mining techniques. In addition, we analyze the AI keyword data by PLS regression model. This regression model is based on the technique of partial least squares used in the advanced analyses such as bioinformatics, social science, and engineering. To show the performance of our proposed method, we make experiments using AI patent documents, and we illustrate how our research can be applied to real problems. This paper is applicable not only to AI technology but also to other technological fields. This also contributes to understanding other various technologies by PLS regression analysis.

Research on art contents based on 4th industrial technology -Focusing on artificial intelligence painting and NFT art- (4차 산업 기술 기반의 예술 콘텐츠 연구 -인공지능 회화와 NFT 미술을 중심으로-)

  • Bang Jinwon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.613-625
    • /
    • 2024
  • This study analyzed the convergence case of AI painting and NFT art, art content created based on digital technology, an innovative technology of the 4th industrial technology, and explored its characteristics. Digital technology that innovates the paradigm of life in the 21st century is being used in creative art, and AI painting and NFT art that use it as an expression tool are changing the way they perceive and accept art. AI painting using big data and artificial intelligence technology is evolving into interactive daily art, and NFT art using blockchain and NFT technology is becoming the art of the metaverse with economic and cultural values. Therefore, this study attempted to explore various aspects and values of these digital convergence arts. For the study, representative examples of AI painting and NFT art were classified into cognitive creative AI painting and language generative AI, art economic NFTs, and art and cultural NFTs, and their characteristics, contents, and meanings were analyzed. It is hoped that the results of this study will contribute to the development of AI painting and NFT art, which are digital convergence arts.

ETRI AI Strategy #6: Developing and Utilizing of AI Technology for Industries and Public Sector (ETRI AI 실행전략 6: 산업·공공 AI 활용기술 연구개발 및 적용)

  • Kim, T.W.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.56-66
    • /
    • 2020
  • As the development of artificial intelligence (AI) technology spreads to various industrial sectors, diversity in AI utilization rapidly increases, creating rich user experience. In addition, AI is required to solve various social problems through the use of public data. The spread of AI utilization across all sectors will continue, covering such industrial and public demands. This article examines the domestic and international trends in AI utilization technologies and establishes the direction of research and development (R&D), which is highly consistent with Korea's AI policy. ETRI, which leads AI's national R&D, has used its experience to establish AI R&D implementation strategies as well as technology roadmaps for the utilization of AI to improve individual quality of life, continuous growth in society, industrial innovation, and the solutions to public societal problems. In addition, it has derived tasks and implementation strategies for developing AI utilization technologies in 10 major areas including medical services.

A Research on 3D Texture Production Using Artificial Intelligence Softwear

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.178-184
    • /
    • 2023
  • AI image generation technology has become a popular research direction in the field of AI, which is widely used in the field of digital art and conceptual design, and can also be used in the process of 3D texture mapping. This paper introduces the production process of 3D texture mapping using AI image technology, and discusses whether it can be used as a new way of 3D texture mapping to enrich the 3D texture mapping production process. Two AI deep learning models, Stable Diffusion and Midjourney, were combined to generate high-quality AI textures. Finally, the lmage to material function of substance 3D Sampler was used to convert the AI-generated textures into PBR 3D texture maps. And applied in 3D environment. This study shows that 3D texture maps generated by AI image generation technology can be used in 3D environment, which not only has short production time and high production efficiency, but also has rich changes in map styles, which can be quickly adjusted and modified according to the design scheme. However, some AI texture maps need to be manually modified before they can be used. With the continuous development of AI technology, there will be great potential for further development and innovation of AI-generated image technology in the 3D content production process in the future.

AI Model Repository for Realizing IoT On-device AI (IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리)

  • Lee, Seokjun;Choe, Chungjae;Sung, Nakmyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.597-599
    • /
    • 2022
  • When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

  • PDF

Roadmap Toward Certificate Program for Trustworthy Artificial Intelligence

  • Han, Min-gyu;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, we propose the AI certification standardization activities for systematic research and planning for the standardization of trustworthy artificial intelligence (AI). The activities will be in two-fold. In the stage 1, we investigate the scope and possibility of standardization through AI reliability technology research targeting international standards organizations. And we establish the AI reliability technology standard and AI reliability verification for the feasibility of the AI reliability technology/certification standards. In the stage 2, based on the standard technical specifications established in the previous stage, we establish AI reliability certification program for verification of products, systems and services. Along with the establishment of the AI reliability certification system, a global InterOp (Interoperability test) event, an AI reliability certification international standard meetings and seminars are to be held for the spread of AI reliability certification. Finally, TAIPP (Trustworthy AI Partnership Project) will be established through the participation of relevant standards organizations and industries to overall maintain and develop standards and certification programs to ensure the governance of AI reliability certification standards.

Best Practices for Implementing AI in STEM Education: A Systematic Literature Review

  • Taha Mansor Khawaji
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.1-13
    • /
    • 2024
  • Artificial intelligence (AI) describes a variety of approaches in computer applications to mimic human learning. As this technology becomes increasingly prevalent, it is inevitable that it will enter the educational environment, as both an educational tool and topic of learning. STEM education, which deals with science, technology, engineering, and math, is perhaps the most appropriate educational field in which to introduce students to this new and rapidly growing technology. In recent years, educators, AI engineers, and educational researchers have published trial results of experimental curricula implementing AI technology in student and teacher education. This systematic literature review analyzed a sample of seven such publications to identify key trends in suggested best practices for the usage of AI in STEM classrooms. The sample was analyzed for keywords using MaxQDA. The results indicated three key trends among suggested best practices. The first was that AI is best taught to students when the technology itself is the topic of education. Another trend was that simulating real world applications of AI technology was most impactful in showing students the potential, limits, and ethical implications of AI. Finally, it was found that educator's familiarity with AI is an important factor in their ability to employ it in the classroom.

ATL 1.0: An Artificial Intelligence Technology Level Definition (ATL 1.0: 인공지능 기술 수준 정의)

  • Min, O.G.;Kim, Y.K.;Park, J.Y.;Park, J.G.;Kim, J.Y.;Lee, Y.K.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Artificial-intelligence (AI) technology is used in a variety of fields, from robot cleaner motion control to call center counselors, AI speakers, and Mars exploration. Because the technology levels of all applications and services that utilize AI vary widely, it is not possible to view all applications using AI technology at the same level. Nevertheless, there have been no cases in which the level of AI technology was defined. Therefore, the Electronics and Telecommunications Research Institute (ETRI) Artificial Intelligence Research Laboratory has defined the levels of the main technical elements of AI from steps 1 to 6. In this report, the Artificial Intelligence Technology Level 1.0 (ATL 1.0) is presented. It was established by comprehensively referring to the AI technology prospects and technology roadmaps of major countries. It is hoped that it can be used as a measure for determining the levels of AI applications or services or as an indicator for establishing a technology roadmap.

Research on Utilization of AI in the Media Industry: Focusing on Social Consensus of Pros and Cons in the Journalism Sector (미디어 산업 AI 활용성에 관한 고찰 : 저널리즘 분야 적용의 주요 쟁점을 중심으로)

  • Jeonghyeon Han;Hajin Yoo;Minjun Kang;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.713-722
    • /
    • 2024
  • This study highlights the impact of Artificial Intelligence (AI) technology on journalism, discussing its utility and addressing major ethical concerns. Broadcasting companies and media institutions, such as the Bloomberg, Guardian, WSJ, WP, NYT, globally are utilizing AI for innovation in news production, data analysis, and content generation. Accordingly, the ecosystem of AI journalism will be analyzed in terms of scale, economic feasibility, diversity, and value enhancement of major media AI service types. Through the previous literature review, this study identifies key ethical and social issues in AI journalism as well. It aims to bridge societal and technological concerns by exploring mutual development directions for AI technology and the media industry. Additionally, it advocates for the necessity of integrated guidelines and advanced AI literacy through social consensus in addressing these issues.

A study on the current status of defense AI in major foreign countries (해외 주요국의 국방AI 현황 연구)

  • Lee Ji-Eun;Jisun Lee;Ryu chong soo
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2023
  • The future battlefield is expected to be very different from what it is today because of the development of new technologies. In particular, it becomes difficult to predict the war's outcome as AI and robots, whose performance is improved, participate in the battlefield. Accordingly, major countries including the US and China regard AI as the key technology and game changer that changing national competitiveness and future wars. Therefore, they are concentrating their efforts at the national level to occupy advance related technologies and to develop AI weapon systems. For this reason, countries are preparing strategies and policies to defense AI, and are actively expanding infrastructure, such as establishing organizations. In Korea, Defense AI is also being promoted. But, it suffers from a lack of governance that manages and controls integrally. Nevertheless, a significant consensus is forming on the necessity of establishing a defense AI center. In this study, we analyzed the status of defense AI promotion in major foreign countries such as the US, UK, and Australia, and suggested some implications for the establishment of defense AI policies.

  • PDF