• Title/Summary/Keyword: AI Reliability

검색결과 207건 처리시간 0.028초

패션 AI의 학습 데이터 표준화를 위한 패션 아이템 이미지의 색채와 소재 속성 분류 체계 (Color & Texture Attribute Classification System of Fashion Item Image for Standardizing Learning Data in Fashion AI)

  • 박낭희;최윤미
    • 한국의류학회지
    • /
    • 제44권2호
    • /
    • pp.354-368
    • /
    • 2020
  • Accurate and versatile image data-sets are essential for fashion AI research and AI-based fashion businesses based on a systematic attribute classification system. This study constructs a color and texture attribute hierarchical classification system by collecting fashion item images and analyzing the metadata of fashion items described by consumers. Essential dimensions to explain color and texture attributes were extracted; in addition, attribute values for each dimension were constructed based on metadata and previous studies. This hierarchical classification system satisfies consistency, exclusiveness, inclusiveness, and flexibility. The image tagging to confirm the usefulness of the proposed classification system indicated that the contents of attributes of the same image differ depending on the annotator that require a clear standard for distinguishing differences between the properties. This classification system will improve the reliability of the training data for machine learning, by providing standardized criteria for tasks such as tagging and annotating of fashion items.

XAI기반 악성코드 그룹분류 결과 해석 연구 (Analysis of Malware Group Classification with eXplainable Artificial Intelligence)

  • 김도연;정아연;이태진
    • 정보보호학회논문지
    • /
    • 제31권4호
    • /
    • pp.559-571
    • /
    • 2021
  • 컴퓨터의 보급 증가와 더불어 일반 사용자들에 대한 공격자들의 악성코드 배포 횟수 또한 증가하였다. 악성코드를 탐지하기 위한 연구는 현재까지도 진행되고 있으며 최근에는 AI를 이용한 악성코드 탐지 및 분석 연구가 중점적으로 이뤄지고 있다. 하지만 AI 알고리즘은 어떠한 이유로 악성코드를 탐지하고 분류하는지 설명할 수 없다는 단점이 존재한다. 이런 AI의 한계를 극복하고 실용성을 갖도록 하기 위해 XAI 기법이 등장하였다. XAI를 사용하면 AI의 최종 결과에 대해 판단 근거를 제시할 수 있다. 본 논문에서는 XGBoost와 Random Forest를 이용하여 악성코드 그룹분류를 진행하였으며, SHAP을 통해 결과를 해석하였다. 두 분류모델 모두 약 99%의 높은 분류 정확도를 보였으며, XAI를 통해 도출된 상위 API feature와 악성코드 주요 API를 비교해보았을 때 일정 수준 이상의 해석 및 이해가 가능하였다. 향후, 이를 바탕으로 직접적인 AI 신뢰성 향상 연구를 진행할 예정이다.

인공 지능을 이용한 흉부 엑스레이 이미지에서의 이물질 검출 (Detecting Foreign Objects in Chest X-Ray Images using Artificial Intelligence)

  • 한창화
    • 한국방사선학회논문지
    • /
    • 제17권6호
    • /
    • pp.873-879
    • /
    • 2023
  • 본 연구는 인공지능(AI)을 사용하여 흉부 엑스레이 이미지에서 이물질을 탐지하는 방법을 탐구하였다. 의료영상학, 특히 흉부 엑스레이는 폐렴이나 폐암과 같은 질병을 진단하는 데 매우 중요한 역할을 한다. 영상의학 검사가 증가함에 따라 AI는 효율적이고 빠른 진단을 위한 중요한 도구가 되었다. 하지만 이미지에는 단추나 브래지어 와이어와 같은 일상적인 장신구를 포함한 이물질이 포함될 수 있어 정확한 판독을 방해할 수 있다. 본 연구에서는 이러한 이물질을 정확하게 식별하는 AI 알고리즘을 개발하였고, 미국 국립보건원 흉부 엑스레이 데이터셋을 가공하여 YOLOv8 모델을 기반으로 처리하였다. 그 결과 정확도, 정밀도, 리콜, F1-score가 모두 0.91에 가까울 정도로 높은 탐지 성능을 보였다. 이번 연구는 AI의 뛰어난 성능에도 불구하고 이미지 내 이물질로 인해 판독 결과가 왜곡될 수 있는 문제점을 해결함으로써 영상의학 분야에서 AI의 혁신적인 역할과 함께, 임상 구현에 필수적인 정확성에 기반하여 신뢰성을 강조하였다.

인공지능의 활용과 위험성에 관한 연구 (감정 평가 산업 중심으로) (A Study on the Use and Risk of Artificial Intelligence (Focusing on the eproperty appraiser industry))

  • 홍석도;유연우
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.81-88
    • /
    • 2022
  • 이번 연구는 인공지능(AI) 활용 가능성에 대한 국내 감정평가사들의 인식과 감정평가산업에서 AI 활용에 따른 관련 리스크를 조사하기 위한 것이다. 2022년 2월 10일부터 18일까지 평가사를 대상으로 모바일 설문조사를 실시했다. 193명의 응답자들로 부터 조사 데이터를 수집했다. 기본 분석을 위해 빈도 분석 및 다중 반응 분석을 수행했다. 감정평가산업에 AI를 활용할 때 다양한 유형의 리스크를 분석하기 위해 요인분석을 활용했다. 감정평가사들은 감정평가산업에 AI 도입에 대해 긍정적인 인식을 갖고 있지만, 일자리 감소 및 일자리 교체와 관련된 부정적인 영향 주로 AI 활용 가능성이 높은 분야와 대체 가능성이 높은 분야로 담보·컨설팅·과세 감정 등을 고려했다. 인적 노동 분야에서 AI에 의한 대체 위험에 대해 더 잘 알고 있었다. 책임, 개인 정보보호 및 보안, 기술적 오류 위험에 대해 매우 잘 알고 있었다. 그러나 공정성, 투명성, 그리고 신뢰성 위험은 일반적으로 낮은 위험 문제로 인식되었다. 기존 연구에서는 주로 AI를 대량 평가 모델에 적용하는 분석 방법을 연구해 왔지만, 이번 연구는 AI의 활용과 위험성에 초점을 맞췄다. AI 활용에 대한 업계 전문가들의 인식을 이해하는 것은 AI가 대규모로 도입될 때 발생할 수 있는 잠재적 위험을 최소화하는 데 도움이 될 것이다.

주얼리 디자인 교육을 위한 생성형 AI의 활용 및 학습자 경험 연구 (A Study on the Use of Generative AI and Learner Experience for Jewelry Design Education)

  • 강혜림
    • 문화기술의 융합
    • /
    • 제10권5호
    • /
    • pp.743-749
    • /
    • 2024
  • 최근 대학 교육에서 생성형 AI의 이용 추이가 활발해지고 있지만, 생성형 AI를 활용한 주얼리 디자인 교육 및 연구는 아직 미흡한 실정이다. 이에 따라 주얼리 디자인 개발 교육 및 아이데이션(ideation) 단계에서 생성형 AI를 활용한 주얼리 디자인 아이디어 발상과 표현의 시각화 가능성과 한계점, 그리고 전공 대학생의 생성형 AI의 경험 및 적용에 대해 논의하고자 한다. 생성형 AI가 학습 경험에 미치는 영향 분석을 위하여 '사용성', '유용성', '신뢰성', '만족도'의 관점에서 분석하였다. 그 결과, 생성형 AI는 피교육자에게 사용성과 유용성 측면에서 긍정적 결과를 관찰하였으며, 개인화된 맞춤형 교육과 집단지성을 활용한 효과에 대한 가능성을 확인하였다. 주얼리 디자인 교육과 생성형 AI의 접목은 융합 교육의 일환으로, 생성형 AI의 학습자 사용 경험을 분석하여 주얼리 디자인 교육의 효과적 활용을 위한 초석을 마련하는 데 본 연구의 의의가 있다. 이러한 교육은 미래 사회의 인재 양성을 위한 시대 흐름을 반영한 교육으로 학습자의 폭넓은 창의적 사고 증진에 기여할 것이다.

무한연결시 4차 산업기술의 이용 가능성 분석을 통한 감성 인공 지능의 자율 결정권에 관한 연구 (A Study on the Autonomous Decision Right of Emotional AI based on Analysis of 4th Wave Technology Availability in the Hyper-Linkage)

  • 서대성
    • 융합정보논문지
    • /
    • 제9권8호
    • /
    • pp.9-19
    • /
    • 2019
  • 본 논문은 인공 지능 기술의 효과는 산업에 미치는 영향과 일상생활의 변화 등에 관한 연구이다. 또한 감성 인공 지능 개발은 차세대 3D 벡터 감응 인공 지능을 대비한다. 이것은 인공 지능의 의사 결정 권력의 주요 키워드를 제시한다. 특히 비 윤리적 학습의 중요성과 윤리적 가치 판단을 반영하는 의사 결정 시스템의 구현으로 인해 중요한 결과가 달성된다. 이것은 데이터 기반 시뮬레이션이며 (1) 사용 가능한 데이터, (2) 시뮬레이션 목표를 위한 기술을 필요로 한다. 실제 의도된 시뮬레이션 기반 연구의 일반적인 내용을 고려한다. 현재 기존 연구는 의미있는 연구 동기에 중점을 두고있느나, 본 연구는 기술의 방향성을 제시하는 결과이다. 그 결과 실증분석은 각국이 인공 지능에 대한 신기술 기업의 윤리 책임감에 대한 의사 결정력과 일치한다. 결론적으로, AI / ML의 기술적 측면에 대한 윤리적 주제에 대해 달성 할 수 있는 구체적인 기여와 해석이 필요하다. 이는 인공지능 의사 결정에서 인간의 공감의 분석력이 더욱 부각될 수 있다.

주거약자를 위한 AI 스마트하우징 주거서비스의 필요성과 중요도에 관한 연구 (A Study on the Necessity and Importance of AI Smart Housing Services for the Housing Disadvantaged Persons)

  • 배융호;김성완;하춘
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제29권4호
    • /
    • pp.45-56
    • /
    • 2023
  • Purpose: Recently, Korea has been promoting smart cities that combine artificial intelligence(AI), big data, ICT, and the Internet of Things(IoT), and these technologies are being applied to housing services and are developing into smart housing services. This study try to analyze what is the most necessary and important the AI smart housing services for the housing disadvantaged persons through a survey of experts and the housing disadvantaged persons. And by collecting these necessary and important services, we aim to present elements and directions for the AI smart housing services policy for the housing disadvantaged persons. Methods: Firstly, we asked 11 experts, Secondly, the desire and necessity for the above smart housing service was identified through an online survey targeting the housing disadvantaged persons. Thirdly, the survey was analyzed and reliability was measured through descriptive statistical analysis using SPSS program. Fourthly, based on the results of descriptive statistics analysis, the necessity and importance of AI smart housing services from the perspective of the housing disadvantaged were derived. Results: The results of this study are that firstly, both experts and the housing disadvantaged persons viewed safety and health-related services as the most important and necessary among AI smart housing services, secondly, there is a difference in perspectives on the services that should be priority between experts and people with disabilities, and lastly there are differences in perspectives and needs for services that should be priority between the disabled and the elderly.

물류 회전설비 고장예지 시스템 (A Fault Prognostic System for the Logistics Rotational Equipment)

  • 김수형;볘르드바에브 예르갈리;조형기;김규익;김진석
    • 산업경영시스템학회지
    • /
    • 제46권2호
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

인공지능 기반 건전성 예측 및 관리에 관한 국내 연구 동향 분석 (Analysis of Domestic Research Trends on Artificial Intelligence-Based Prognostics and Health Management)

  • 정예은;김용수
    • 품질경영학회지
    • /
    • 제51권2호
    • /
    • pp.223-245
    • /
    • 2023
  • Purpose: This study aim to identify the trends in AI-based PHM technology that can enhance reliability and minimize costs. Furthermore, this research provides valuable guidelines for future studies in various industries Methods: In this study, I collected and selected AI-based PHM studies, established classification criteria, and analyzed research trends based on classified fields and techniques. Results: Analysis of 125 domestic studies revealed a greater emphasis on machinery in both diagnosis and prognosis, with more papers dedicated to diagnosis. various algorithms were employed, including CNN for image diagnosis and frequency analysis for signal data. LSTM was commonly used in prognosis for predicting failures and remaining life. Different industries, data types, and objectives required diverse AI techniques, with GAN used for data augmentation and GA for feature extraction. Conclusion: As studies on AI-based PHM continue to grow, selecting appropriate algorithms for data types and analysis purposes is essential. Thus, analyzing research trends in AI-based PHM is crucial for its rapid development.

Development of an AI-based remaining trip time prediction system for nuclear power plants

  • Sang Won Oh;Ji Hun Park;Hye Seon Jo;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3167-3179
    • /
    • 2024
  • In abnormal states of nuclear power plants (NPPs), operators undertake mitigation actions to restore a normal state and prevent reactor trips. However, in abnormal states, the NPP condition fluctuates rapidly, which can lead to human error. If human error occurs, the condition of an NPP can deteriorate, leading to reactor trips. Sudden shutdowns, such as reactor trips, can result in the failure of numerous NPP facilities and economic losses. This study develops a remaining trip time (RTT) prediction system as part of an operator support system to reduce possible human errors and improve the safety of NPPs. The RTT prediction system consists of an algorithm that utilizes artificial intelligence (AI) and explainable AI (XAI) methods, such as autoencoders, light gradient-boosting machines, and Shapley additive explanations. AI methods provide diagnostic information about the abnormal states that occur and predict the remaining time until a reactor trip occurs. The XAI method improves the reliability of AI by providing a rationale for RTT prediction results and information on the main variables of the status of NPPs. The RTT prediction system includes an interface that can effectively provide the results of the system.