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In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone 
to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of 
logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) 
can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing 
sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only 
overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages 
by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train 
and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop 
a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their 
fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, 
signal processing methods, feature analysis methods, and the model development. 
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1. Introduction1)

Recently, digital transformation is underway due to logistics 
intelligence as Logistic 4.0 using data-based technologies such 
as IoT, Bigdata, and AI is accelerating. These core technologies 
of the 4th Industrial Revolution have become major industries 
throughout the operation and maintenance of logistics facilities 
due to their economic advantages [3]. 

With the recent activation of non-contact work due to 
changes in the social environment such as COVID-19, logistics 
centers are also being automated and unmanned. Therefore, 
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the use of Logistics 4.0 such as robotics, digital twin, IoT, 
and AI is being carried out in various forms. In particular, 
computational intelligence, or AI technology, is being at-
tempted to optimize and maintain the logistics operations of 
automation facilities such as parcel sorter, transport facilities, 
and logistics warehouses.

However, despite the intensive growth of logistics in-
telligence, facility maintenance faces many difficulties. 
Logistics facilities are frequently disrupted by poor operating 
conditions such as high loads, and damages to their major 
parts are likely to cause major accidents such as the suspension 
of the entire logistics center. For instance, recently there was 
a suspension of Daejeon Hub Terminal, which accounts for 
one-third of total delivery volume of a South Korean logistics 
company that accounts for about half of the domestic delivery 
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volume. Then it caused delays in services and expensive costs 
to redistribute the holds, which were about 1.5 millions, to 
other terminals [5]. 

The main components of most logistics automation facilities 
are rotating mechanical components such as motors and 
bearings. The machines are typical cases of early detection 
as they always have potential elements of danger and large 
accidents. 

In order to ensure the reliability of the facilities, Time-Based 
Maintenance (TBM) can be performed in every certain period 
of time, but this causes excessive maintenance costs and has 
limitations in preventing sudden failures and accidents.

Unlike TBM, the predictive maintenance using AI fault 
diagnosis model can automatically detect abnormalities in lo-
gistics facilities, predict future failures, and take proactive 
measures, so it can ensure stable and reliable system manage-
ment at low maintenance costs. A Research has found that 
the predictive maintenance of mechanical facilities can reduce 
unexpected downtime losses by up to 20% and minimize 
maintenance costs by up to 10% [1].

The predictive maintenance market is expected to grow 
from 4 billion dollars in 2020 to 13 billion dollars by 2025. 
In particular, the delivery and logistics industry is expected 
to grow from 548 million dollars in 2020 to 1.7 billion dollars 
by 2025, and AI-based predictive maintenance technology 
is expected to be an core technology in the logistics industry 
in the future [4].

In this study, we created a fault diagnosis system for a 
rotating machine of a logistics center. Specifically, we collected 
normal and abnormal state of machines for training AI models, 
and we were able to detect failures of motor components 
such as bearing, rotor, and stator. In the rest of paper, I will 
explain how we design AI models, collect data, transform 
data, and train AI algorithms. 

2. Model Design

2.1 Design of Fault Monitoring System

The facility diagnosis model in the fault monitoring system 
is for detecting abnormal signals from acquired sensor data 
and diagnosing which type of faults has occurred to the 
machine. The model becomes the main algorithm for the mon-
itoring system, which collects vibration and current sensor 
data, processes them in order to diagnose any fault issue, 

and displays a current state of the machine. The whole system 
design is shown in <Figure 1>. In this paper, we are going 
to focus on the AI model using vibration data as emphasized 
with a red-dotted line in the figure.

<Figure 1> Fault Diagnosis Monitoring System

2.2 Design of AI Fault Diagnosis Model 

The algorithm of the fault diagnosis model is divided to 
two parts : anomaly detection and fault type diagnosis. The 
procedure of the AI fault diagnosis model is illustrated in 
<Figure 2> and is briefly defined as the followings.

<Figure 2> Motor Fault Diagnosis Model Design

∙A data acquisition device collects a sensor data in re-
al-time. This type of data is called time-waveform data, 
or raw data.

∙We remove noise from the raw data by using a denoising 
method, and then calculate mathematically significant 
factors, so called feature parameters. These factors are 
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used for the anomaly detection. For fault type diagnosis, 
we convert the domain of the time-waveform data to 
the frequency domain and find the signature frequency 
for each fault types. 

∙The feature parameters are saved in a database and diag-
nosed by the anomaly detection. If the data is detected 
as an abnormal data, then it is further diagnosed to see 
which fault type it is.

∙After the model diagnoses the condition of the machine, 
the data is defined as its condition and saved in the 
database.

3. Data Preparation and Transformation

3.1 Data Acquisition

We collected sensor data from an rotor kit, which is a 
motor-drive experimental setup as illustrated in <Figure 3>. 
An industrial conveyor belt is powered by a motor, which 
means that if we can predict a motor failure, we can prevent 
the malfunction of a conveyor belt. Therefore, we created 
the rotor kit in order to collect motor data and find fault 
signatures for the AI model. 

<Figure 3> Rotor Kit

In order to collect different types of fault, we prepared 
intentionally damaged motors. The specification of the motor 
used in the rotor kit are 1.5kW power supply and four poles. 
Although the motor is smaller than general motors for industrial 
conveyor belts, but we chose to use the size of a motor because 
of its price competitiveness. We damaged components inside 
the motor to create intentional failure of the motor, and since 
we were able to control the experiment, we labeled which 
part of the motor is broken. All fault labels and the number 
of data samples are listed in <Table 1>. 

<Table 1> Fault Labels and Data Acquisition Amount

Component Fault Type Time (sec)

Bearing

Normal Bearing 1200
Cracked Outer Race 300
Cracked Inner Race 300

Cracked Ball 300
Cracked Cage 300

Rotor
Normal Rotor 600

Broken Rotor Bar 300
Eccentricity 300

Stator
Normal Stator 600
Shorted Coil 300
Single Phase 300

The data we achieved from the sensor is vibration data, 
measured in acceleration. The vibration is is a sinusoidal wave-
form and is collected 16,384 samples per a second. The <Figure 
4> illustrates the normal and abnormal vibration data we col-
lected for the experiment.

<Figure 4> Normal and Abnormal Vibration Waveform

3.2 Noise Filtering

In order to analyze the vibration data more precisely, we 
need to remove noises from the sensor data. There are several 
noise removing methods such as autoregressive filtering, wave-
let decomposition, etc. When removing noises from vibration 
signals, people often use the autoregressive filtering model, 
or so-called the AR model.

The AR model is a model that predicts a current state 
by summing up the past states regressively, <Equation 1>. 

  
  



  (1)

Since a discrete noise of the vibration is considered predict-
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able due to its repetitive behavior, we can predict the noise 
using the AR model [9]. We can remove the noise from 
the original vibration in order to yield the denoised vibration 
signal as shown in <Equation 2>.

 
    (2)

where   is the clean vibration,   is the original, and 
  is the discrete noise.

The discrete noise is obtained by <Equation 3>.

 
  



 (3)

where  and  are time indexes,  is the order of the model, 
and   are regressive parameters.

After we applied the noise filtering method to the bearing 
data, we achieved a denoised fault data. The illustration in 
<Figure 5> describes the comparison between the original 
faulty signal and the denoised signal.

<Figure 5> The Comparison Between the Signals

3.3 Feature Extraction for Anomaly Detection

The anomaly detection model needs to discriminate abnor-
mality from time waveform data; therefore, we need to train 
the model with representative and summarized values, which 
is also called feature parameters. Feature parameters are inputs 
for training machine learning algorithms, and they are important 
factors to achieve high precision. We used three statistical 
indexes as feature parameters to demonstrate uniqueness of 
the vibration waveform: root mean squared, crest factor, and 
skewness. The equations for the indexes are shown in <Table 
2>.

<Table 2> Time Waveform Feature Parameters

Statistical Indexes Formula

Peak 

Standard Deviation 





  






Root Mean Square 





  



 

Crest Factor 



Skewness
 





  






The root mean square and crest factor are key factors to 
represent time waveform [2]. Those factors are illustrated 
in <Figure 6>.

<Figure 6> Peak and RMS of Time Waveform

In addition to the two factors, skewness, which describes 
how sharp the peak is, can also show the uniqueness of vibration 
signals. Unlike the moderate normal vibration, the faulty vi-
bration tends to have spikes as shown in <Figure 4>.

3.4 Feature Extraction for Fault Diagnosis

While statistically analyzing time waveform was enough 
for anomaly detection, we need to transform the time waveform 
data to a different type of waveform in order to find what 
type of fault the machine has. Each fault type has its specific 
frequency. That is, although they are rotating at the same 
time, a cracked rotor has different rotational occurrence to 
a cracked bearing because their sizes are different. Therefore, 
if we find the signature frequencies of each fault type, we 
can identify the corresponding failed components. 

Therefore, we need to transform the time waveform data 
to the frequency waveform data. The most popular method 
is the Fourier Transform. We used a faster algorithm of the 
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method to transform the time waveform data to the frequency 
data. The <Figure 7 A-C> illustrate the frequency data of 
a bearing, a rotor and a stator while they are abnormal [8].

<Figure 7A> Vibration of a Bearing in the Frequency Domain 

<Figure 7B> Vibration of a Rotor in the Frequency Domain 

<Figure 7C> Vibration of a Stator in the Frequency Domain 

To analyze the frequency data, we need to find the signature 
frequencies of the faults. These frequencies are defined as 
<Table 3>[2].

Component Fault Type Frequency Equation

Bearing

Cracked Inner Race   


  




Cracked Outer Race   


  




Cracked Ball   


  

 


  
Cracked Cage   

  




Rotor
Broken Rotor Bar    ±  

Eccentricity    ±  

Stator
Shorted Coil

  


   ± Single Phase

<Table 3> Vibration Signature Analysis for Motor Components

Using the frequency equations, we can find the signature 
frequencies from <Figure 7A-C>. The <Figure 8A-C> show 
the signature frequencies of each components. 

<Figure 8A> Bearing - Outer Race Fault Frequency

<Figure 8B> Rotor - Eccentricity Fault Frequency

<Figure 8C> Stator - Shorted Coil Fault Frequency

As illustrated in <Figure 8A-C>, although the signature 
frequencies are not dominant, they are definitely depicted 
in the waveform. We record the magnitudes of the frequencies 
and use them as feature paramters for the fault type detection 
model. 

4. Training Model

4.1 Training Dataset for Anomaly Detection Model

We calculated RMS, crest factor, and skewness from the 
time waveform vibration data and created a training dataset. 
Since we collected each 2,400 seconds of normal and abnormal 
data, we can create a dataset of 4,800 records of RMS, crest 
factor, and skewness. The dataset is divided into the training 
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dataset and testing dataset, respectively 7 to 3 ratio. The dataset 
for normal and abnormal data is shown in <Figure 9A-B>.

<Figure 9A> Normal Training Dataset 

<Figure 9B> Abnormal Training Dataset 

As illustrated in <Figure 9>, the normal data is labeled 
0, and the abnormal data is labeled 1. Since there are only 
two types of data, we used a binary classification algorithm.

4.2 Anomaly Detection Model Algorithm

There are many binary classificiation methods such as the 
Decision Tree, the SVM, etc. In order to find the algorithm 
that has highest accuracy for the data, we used the AutoML 
library, so-called Pycaret. The library automatically validates 
the training dataset to all algorithms that it allows and evaluates 
the prediction score. 

<Figure 10> Anomaly Detection Training Result

We used 10-fold cross validation method to train the anomaly 
detection dataset. The cross validation method is for normaliz-
ing the prediction result after the model is trained. The <Figure 
10> shows the prediction score for the anomaly detection.

The validation result shows that quadratic discriminant anal-
ysis predicts the most accurately with 91.4%. This is a result 
for self-testing with the training dataset; therefore, the model 
can perform less when it is evaluated with the testing dataset.

4.3 Training Dataset for Fault Diagnosis Model

For the fault type diagnosis model, we collected the signature 
frequencies and labeled each record with its fault type. The 
size of the dataset is 4,800 with normal state motor. Although 
it is a fault type detection model, we trained normal state 
in order to distinguish normal and fault states. The normal 
state is labeled as Motor. The <Figure 11> illustrates the 
dataset for fault type detection model.

<Figure 11> Fault Diagnosis Model Dataset

The dataset for the fault type detection model is also divided, 
respectively 7 to 3 ratio. 

4.4 Fault Diagnosis Model Algorithm

To effectively train the dataset for the model, we used 
four famous classification models, which are Extra Trees, 
Extreme Gradient Boost, Random Forest, and Catboost, with 
two classic models, Decision Tree and SVM [6]. The validation 
result is shown in <Figure 12>.

<Figure 12> Fault Diagnosis Training Result
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5. Model Evaluation

We measured the performance of the models by calculating 
accuracy, precision, and recall. In addition to accuracy that 
is most definitely used as a metric to calculate the performance 
of a model, precision and recall are also important metrics 
to be considered because as the number of the prediction 
increases, the accuracy can be biased. 

The followings are the equations for accuracy, precision, 
and recall.


 (4)

Precision 
 (5)

 
 (6)

For the Quadratic Discriminant Analysis classification algo-
rithm for the anomaly detection model showed the performance 
as <Table 4>.

State Accuracy Precision Recall

Normal 0.8864 0.8994 0.8965
Abnormal 0.8837 0.8945 0.8945

<Table 4> The Performance of Anomaly Detection

The anomaly detection model showed that it can find abnor-
mality with 88% correctness. Despite the fact that this is 
a high accuracy, we can improve the accuracy by training 
more abnormal data. 

The performance of the fault type detection model is shown 
in <Table 5>.

Model Accuracy Precision Recall

RF 0.9810 0.9822 0.9920
ET 0.9834 0.9845 0.9986

CATB 0.9754 0.9762 0.9910
XGB 0.9491 0.9510 0.9989
DT 0.9285 0.9398 0.9622

SVM 0.9342 0.9348 -

<Table 5> The Performance of Fault Type Detection 

We noticed that the performance of the fault type detection 
model is higher than the anomaly detection model. It is because 
we used more number of features for the fault type detection 
model. However, since the frequency analysis takes a longer 

time than the time analysis, the fault type detection model 
costs higher than the anomaly detection model. Therefore, 
we can conclude that using both models in order to make 
them supplement to one another would yield the optimal result 
for the fault diagnosis monitoring system. 

6. Concluding Remarks

In this paper, we developed a fault diagnosis model for 
rotating machines that are used in logistics facilities by analyz-
ing vibration data from the rotor kit that imitates a motor 
in an industrial conveyor belt. As the result, we were success-
fully able to diagnose fault types of the data from the kit. 

In logistics facilities, there are other important facilities. 
We can further extend this study by applying this fault detection 
algorithm to other facilities.
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