5G 시대를 맞아, 인공지능, 클라우드 컴퓨팅, 자율주행 차량, 스마트 제조 등의 기술 소요가 증가하고 있다. 전자기기의 고효율을 위해 고집적회로 및 패키징 연구는 중요하다. 전해도금된 솔더는 범프 조성의 균일성에 한계가 있다. 작은 크기의 솔더 파우더로 구성된 솔더 페이스트는 고집적 패키징에 일반적으로 사용되는 솔더 중 하나이다. 솔더 페이스트에 나노 입자를 첨가하거나 기판 표면 마감 처리를 하여 젖음성을 향상시키고, 금속 패드 계면에서 금속간화합물의 성장을 억제하는 연구가 진행중이다. 본 논문은 나노 입자 첨가를 통한 솔더 페이스트의 젖음성 향상과 계면 금속간화합물의 성장을 억제하는 원리에 대하여 설명한다.
건축물의 에너지소비를 줄이기 위해 건물의 기밀도가 지속적으로 향상되고 있으며, 이로 인해 건물 내부의 평균적인 상대습도가 높아지고 있다. 평균 상대습도가 높아짐에 따라 단열 취약부 및 습기발생 행위 시 결로가 발생하며, 습기제어를 위하여 기계 환기장치의 중요성이 향상되고 있다. 그러나, 기계환기장치는 추가적인 에너지 소비 및 소음 발생으로 재실자의 불쾌감을 유발하기 때문에, 서로 상충되는 기준에 대한 적절한 환기전략 선정이 필요하다. 본 연구에서는 공동주택 내 기계환기장치의 환기성능, 에너지 소비량, 소음도를 측정하여, 서로 상충하는 운영기준 중 우선순위에 있는 환기전략을 찾기위해 다기준 의사결정기법인 TOPSIS를 이용하였다. 또한, 재실자의 환기장치 운영기준 선호도에 따라 달라지는 적절 환기전략을 도출하였으며, 향후 AI 기술을 활용한 재실자 맞춤 환기전략 제시가 가능할 것으로 사료된다.
최근 농업 경랭력 향상 및 비용 절감을 최소화하기 위해서 IoT 기술을 다양한 농장에 적용하는 스마트 팜 연구가 활발하게 진행되고 있다. 특히, IoT 장치를 통해 스마트 팜 주변의 환경정보 데이터를 원격 제어할 수 있는 방법들이 연구되고 있다. 본 논문에서는 스마트 팜에서 수집된 환경정보 데이터를 머신러닝 기반으로 실시간 모니터링하여 최적의 생육환경을 유지할 수 있는 모델을 제안한다. 제안 모델은 머신러닝 기술을 사용하기 때문에 풍부한 빅데이터 확보 방안을 통해 지속적인 데이터 수집이 가능하도록 다중 블록체인으로 환경 정보를 묶는다. 또한, 제안 모델은 수집된 환경 정보 데이터를 가중치와 상관관계 지수를 이용하여 우선 순위에 따라 선택(또는 바인딩)적으로 지정한다. 마지막으로, 제안 모델은 실시간으로 환경 정보를 처리할 수 있도록 환경 정보 처리 비용을 최소한으로 n-계층으로 확장할 수 있도록 한다.
Thanks to the competition of AlphaGo and Sedol Lee, machine learning has received world-wide attention and huge investments. The performance improvement of computing devices greatly contributed to big data processing and the development of neural networks. Artificial intelligence not only imitates human beings in many fields, but also seems to be better than human capabilities. Although humans' creation is still considered to be better and higher, several artificial intelligences continue to challenge human creativity. The quality of some creative outcomes by AI is as good as the real ones produced by human beings. Sometimes they are not distinguishable, because the neural network has the competence to learn the common features contained in big data and copy them. In order to confirm whether artificial intelligence can express the inherent characteristics of different arts, this paper proposes a new neural network model called Humming. It is an experimental model that combines vgg16, which extracts image features, and DeepJ's architecture, which excels in creating various genres of music. A dataset produced by our experiment shows meaningful and valid results. Different results, however, are produced when the amount of data is increased. The neural network produced a similar pattern of music even though it was a different classification of images, which was not what we were aiming for. However, these new attempts may have explicit significance as a starting point for feature transfer that will be further studied.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.420-426
/
2022
Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.
디스플레이는 브라운관을 시작으로 PDP(Plasma Display Panel), LCD(Liquid Crystal Display) 이후 AMOLED(Active Marix Organic Light Emitting Diode) 순으로 시장을 형성하고 있다. 유기발광다이오드 OLED는 4차 산업혁명을 준비하는 각 국가들의 발전을 위한 핵심 분야로 인정받고 있는 기술이며, 특히 국내 최고업계 삼성 디스플레이, LG디스플레이는 OLED의 90%이상의 점유율로 시장을 주도하고 있다. 현재 AMOLED는 접거나 휠 수 있는 영역으로 옮겨왔으며, 이와 같은 기술이 가능한 이유는 플렉서블 기판상에 TFT(Thin Film Transistor)와 OLED가 형성가능하기 때문이다. 향후 스트레처블 디스플레이로 그 기술은 이동할 것이며, 이를 위해서는 늘어나는 기판 소재 개발이 우선 진행되고, 다음으로 TFT, OLED 소자 역시 늘어날 수 있는 재료로 구현되어야 할 것이다.
이 논문에서는 스마트폰 또는 스마트 워치와 같은 스마트 디바이스를 이용한 IoT 기반의 배낭식 청소기 제어 시스템을 구현한다. 구현 시스템은 제어모듈 제작, 제어 모듈 프로그래밍, 스마트 디바이스 프로그래밍으로 이루어져 있다. 이 중 제어 모듈은 아두이노 나노, HM-10 BLE 모듈 및 릴레이를 기본 부품으로 하여 제작하였다. 스마트 디바이스는 제어 모듈과 양방향 BLE 통신으로 신호 교환을 하고 있으며, 이를 통해 청소기의 시작/정지를 제어 할 수 있게 한다. 배낭식 청소기는 사다리 등을 이용해야 하는 높은 장소를 청소할 때 효과적이다. 그러나 배낭식 청소기를 시작/정지하기 위해 메고 있는 청소기를 벗어야 하는 경우가 종종 발생한다. 이 논문에서 구현한 사물인터넷 기반의 청소기 제어 시스템은 청소기를 벗지 않으면서도 청소기의 시작/정지를 제어할 수 있도록 함으로써 문제를 근본적으로 해결하였다.
Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.
최근 4차 산업혁명 시대가 다가오면서 휴대성을 강조한 IoT 기기가 늘고 있다. 동시에 배터리 사용량도 급증하고 있다. 배터리 사용량이 증가하면서 배터리 안전과 관련된 이슈는 피할 수 없는 문제가 되었고, 많은 연구가 이뤄졌다. 본 논문은 다양한 배터리 문제 중 팽창으로 인한 폭발 문제를 다루고 있으며, 저항 변화를 파악하여 배터리 팽창을 감지하는 시스템의 연구 및 개발을 포함하고 있다. 이번 연구의 핵심기술은 배터리가 팽창할 때 발생하는 부피 변화를 배터리에 그려진 전선의 저항 변화를 이용해 배터리 폭발을 방지하는 시스템을 개발하는 것이다. 또한 패턴분석을 통해 어떤 형태로 전선을 구성하여야 저항 변화가 많이 일어나는지 분석하였다.
POI refers to the point of Interest in Location-Based Social Networks (LBSNs). With the rapid development of mobile devices, GPS, and the Web (web2.0 and 3.0), LBSNs have attracted many users to share their information, physical location (real-time location), and interesting places. The tremendous demand of the user in LBSNs leads the recommendation systems (RSs) to become more widespread attention. Recommendation systems assist users in discovering interesting local attractions or facilities and help social network service (SNS) providers based on user locations. Therefore, it plays a vital role in LBSNs, namely POI recommendation system. In the machine learning model, most of the training data are stored in the centralized data storage, so information that belongs to the user will store in the centralized storage, and users may face privacy issues. Moreover, sharing the information may have safety concerns because of uploading or sharing their real-time location with others through social network media. According to the privacy concern issue, the paper proposes a recommendation model to prevent user privacy and eliminate traditional RS problems such as cold-start and data sparsity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.