• Title/Summary/Keyword: AI 기반 수학교육

Search Result 28, Processing Time 0.019 seconds

Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges (수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전)

  • Kim, Somin;Lee, GiMa;Kim, Hee-jeong
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.199-226
    • /
    • 2024
  • In response to the era of transformation necessitating the introduction of Artificial Intelligence (AI) and digital technologies, educational innovation is undertaken with the implementation of AI digital textbooks in Mathematics, English, and Information subjects by 2025 in Korea. Within this context, this study analyzed the perceptions and needs of elementary school teachers regarding mathematics AI digital textbook. Based on a survey conducted in November 2023, involving 132 elementary school teachers across the country, the analysis revealed that the majority of elementary school teachers had a low perception of the introduction and need for mathematics AI digital textbooks. However, some recognized the potential for personalized learning and effective teaching support. Furthermore, among the core technologies of the AI digital textbook, teachers highly valued the necessity of learning diagnostics and teacher reconfiguration functions and had the most positive perception of their usefulness in math lessons, while their perception of interactivity was relatively low. These findings suggest the need for changing teachers' perceptions through professional development and information provision to ensure the successful adoption and use of mathematics AI digital textbooks. Specifically, providing concrete and practical ways to use the AI digital textbook, exploring alternatives to digital overload, and continuing development and research on core technologies.

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.

Validation of the effectiveness of AI-Based Personalized Adaptive Learning: Focusing on basic math class cases (인공지능(AI) 기반 맞춤형 학습의 효과검증: 기초 수학수업 사례 중심으로)

  • Eunae Burm;Yeol-Eo Chun;Ji Youn Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.35-43
    • /
    • 2023
  • This study tried to find out the applicability and effectiveness of the AI-based adaptive learning system in university classes by operating an AI-based adaptive learning system on a pilot basis. To this end, an AI-based adaptive learning system was applied to analyze the operation results of 42 learners who participated in basic mathematics classes, and a survey and in-depth interviews were conducted with students and professors. As a result of the study, the use of an AI-based customized learning system improved students' academic achievement. Both instructors and learners seem to contribute to improving learning performance in basic concept learning, and through this, the AI-based adaptive learning system is expected to be an effective way to enhance self-directed learning and strengthen knowledge through concept learning. It is expected to be used as basic data related to the introduction and application of basic science subjects for AI-based adaptive learning systems. In the future, we suggest a strategy study on how to use the analyzed data and to verify the effect of linking the learning process and analyzed data provided to students in AI-based customized learning to face-to-face classes.

Preservice teachers' evaluation of artificial intelligence -based math support system: Focusing on TocToc-Math (예비교사의 인공지능 지원시스템에 대한 평가: 똑똑! 수학탐험대를 중심으로)

  • Sheunghyun, Yeo;Taekwon Son;Yun-oh Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.369-385
    • /
    • 2024
  • With the advancement of digital technology, a variety of digital materials are being utilized in education. For their appropriate use of digital resources, teachers need to be able to evaluate the quality of digital resource and determine the suitability for teaching. This study explored how preservice teachers evaluate TocToc-Math, an Artificial Intelligence (AI)-based math support system. Based on an evaluation framework developed through prior research, preservice teachers evaluated TocToc-Math with evidence-based criteria, including content quality, pedagogy, technology use, and mathematics curriculum alignment. The findings shows that preservice teachers positively evaluated TocToc-Math overall. The evaluation tendencies of preservice teachers were classified into three groups, and the specific characteristics of each factor differed depending on the group. Based on the research results, we suggest implications for improving preservice teachers' evaluation abilities regarding the use of digital technology and AI in mathematics education.

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.

An Analysis Study of SW·AI elements of Primary Textbooks based on the 2015 Revised National Curriculum (2015 개정교육과정에 따른 초등학교 교과서의 SW·AI 요소 분석 연구)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.317-325
    • /
    • 2021
  • In this paper, the degree of reflection of SW·AI elements and CT elements was investigated and analyzed for a total of 44 textbooks of Korean, social, moral, mathematics and science textbooks based on the 2015 revised curriculum. As a result of the analysis, most of the activities of data collection, data analysis, and data presentation, which are ICT elements, were not reflected, and algorithm and programming elements were not reflected among SW·AI content elements, and there were no abstraction, automation, and generalization elements among CT elements. Therefore, in order to effectively implement SW·AI convergence education in elementary school subjects, we will expand ICT utilization activities to SW·AI utilization activities. Training on the understanding of SW·AI convergence education and improvement of teaching and learning methods using SW·AI is needed for teachers. In addition, it is necessary to establish an information curriculum and secure separate class hours for substantial SW·AI education.

Research on a statistics education program utilizing deep learning predictions in high school mathematics (고등학교 수학에서 딥러닝 예측을 이용한 통계교육 프로그램 연구)

  • Hyeseong Jin;Boeuk Suh
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.209-231
    • /
    • 2024
  • The education sector is undergoing significant changes due to the Fourth Industrial Revolution and the advancement of artificial intelligence. Particularly, the importance of education based on artificial intelligence is being emphasized. Accordingly, the purpose of this study is to develop a statistics education program using deep learning prediction in high school mathematics and to examine the impact of such statistically problem-solvingcentered statistics education programs on high school students' statistical literacy and computational thinking. To achieve this goal, a statistics education program using deep learning prediction applicable to high school mathematics was developed. The analysis revealed that students' understanding of context improved through experiencing how data was generated and collected. Additionally, they enhanced their comprehension of data variability while exploring and analyzing various datasets. Moreover, they demonstrated the ability to critically analyze data during the process of validating its reliability. In order to analyze the impact of the statistics education program on high school students' computational thinking, a paired sample t-test was conducted, confirming a statistically significant difference in computational thinking between before and after classes (t=-11.657, p<0.001).

Analysis of the Current Status of the AI Major Curriculum at Universities Based on Standard of AI Curriculum

  • Kim, Han Sung;Kim, Doohyun;Kim, Sang Il;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.25-31
    • /
    • 2022
  • The purpose of this study is to explore the implications for the systematic operation of the AI curriculum by analyzing the current status of the AI major curriculum in universities. To this end, This study analyzed the relevant curriculum of domestic universities(a total of 51 schools) and overseas QS Top 10 universities based on the industry demand-based standard of AI major curriculum developed through prior research. The main research results are as follows. First, in the case of domestic universities, Python-centered programming subjects were lacking. Second, there were few subjects for advanced learning such as AI application and convergence. Third, the subjects required to perform the AI developer job were insufficient. Fourth, in the case of colleges, the ratio of AI mathematics-related subjects was low. Based on these results, this study presented implications for the systematic operation of the AI major education.

Analysis of achievement predictive factors and predictive AI model development - Focused on blended math classes (학업성취도 예측 요인 분석 및 인공지능 예측 모델 개발 - 블렌디드 수학 수업을 중심으로)

  • Ahn, Doyeon;Lee, Kwang-Ho
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.257-271
    • /
    • 2022
  • As information and communication technologies are being developed so rapidly, education research is actively conducted to provide optimal learning for each student using big data and artificial intelligence technology. In this study, using the mathematics learning data of elementary school 5th to 6th graders conducting blended mathematics classes, we tried to find out what factors predict mathematics academic achievement and developed an artificial intelligence model that predicts mathematics academic performance using the results. Math learning propensity, LMS data, and evaluation results of 205 elementary school students had analyzed with a random forest model. Confidence, anxiety, interest, self-management, and confidence in math learning strategy were included as mathematics learning disposition. The progress rate, number of learning times, and learning time of the e-learning site were collected as LMS data. For evaluation data, results of diagnostic test and unit test were used. As a result of the analysis it was found that the mathematics learning strategy was the most important factor in predicting low-achieving students among mathematics learning propensities. The LMS training data had a negligible effect on the prediction. This study suggests that an AI model can predict low-achieving students with learning data generated in a blended math class. In addition, it is expected that the results of the analysis will provide specific information for teachers to evaluate and give feedback to students.

A Study on the Development of Teaching-Learning Materials for Gradient Descent Method in College AI Mathematics Classes (대학수학 경사하강법(gradient descent method) 교수·학습자료 개발)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.467-482
    • /
    • 2023
  • In this paper, we present our new teaching and learning materials on gradient descent method, which is widely used in artificial intelligence, available for college mathematics. These materials provide a good explanation of gradient descent method at the level of college calculus, and the presented SageMath code can help students to solve minimization problems easily. And we introduce how to solve least squares problem using gradient descent method. This study can be helpful to instructors who teach various college-level mathematics subjects such as calculus, engineering mathematics, numerical analysis, and applied mathematics.