DOI QR코드

DOI QR Code

Preservice teachers' evaluation of artificial intelligence -based math support system: Focusing on TocToc-Math

예비교사의 인공지능 지원시스템에 대한 평가: 똑똑! 수학탐험대를 중심으로

  • Sheunghyun, Yeo (Daegu National University of Education) ;
  • Taekwon Son (Bongmyeong Elementary School) ;
  • Yun-oh Song (Asan Galsan Elementary School)
  • 여승현 (대구교육대학교) ;
  • 손태권 (봉명초등학교) ;
  • 송윤오 (아산갈산초등학교)
  • Received : 2020.03.22
  • Accepted : 2024.05.02
  • Published : 2024.05.31

Abstract

With the advancement of digital technology, a variety of digital materials are being utilized in education. For their appropriate use of digital resources, teachers need to be able to evaluate the quality of digital resource and determine the suitability for teaching. This study explored how preservice teachers evaluate TocToc-Math, an Artificial Intelligence (AI)-based math support system. Based on an evaluation framework developed through prior research, preservice teachers evaluated TocToc-Math with evidence-based criteria, including content quality, pedagogy, technology use, and mathematics curriculum alignment. The findings shows that preservice teachers positively evaluated TocToc-Math overall. The evaluation tendencies of preservice teachers were classified into three groups, and the specific characteristics of each factor differed depending on the group. Based on the research results, we suggest implications for improving preservice teachers' evaluation abilities regarding the use of digital technology and AI in mathematics education.

디지털 기술의 발전과 함께 교육에서도 다양한 디지털 자료가 활용되고 있다. 교사가 디지털 자료를 적절히 사용하기 위해서는 먼저 해당 자료가 수업에 적합한지 판단하고 그 질을 평가할 수 있어야 한다. 본 연구는 예비교사들이 인공지능 기반 수학 수업 지원시스템인 똑똑! 수학탐험대를 어떻게 평가하는지 탐색하였다. 선행연구를 기반으로 개발된 평가틀을 바탕으로 똑똑! 수학탐험대에 대해서 콘텐츠의 질, 수학 교수, 기술 사용, 수학교육과정과의 부합성을 평가하였다. 연구결과, 예비교사들은 똑똑! 수학탐험대를 전반적으로 긍정적으로 평가하였다. 예비교사들의 평가 경향은 세 집단으로 분류되었으며, 준거별 구체적인 특징은 집단에 따라 다르게 나타났다. 연구 결과를 바탕으로 수학교육에서 디지털 기술 및 인공지능 사용에 대한 예비교사의 평가 능력을 개선하기 위한 시사점을 제안하였다.

Keywords

References

  1. Angeli, C., & Valanides, N. (2013). Technology mapping: An approach for developing technological pedagogical content knowledge. Journal of Educational Computing Research, 48 (2), 199-221. https://doi.org/10.2190/EC.48.2.e
  2. Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1964). Taxonomy of educational objectives (Vol. 2). Longmans, Green.
  3. Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research: A systematic review of recent trends. Computers & Education, 114, 255-273. https://doi.org/10.1016/j.compedu.2017.07.004
  4. Davies, R. S., & West, R. E. (2014). Technology integration in schools. In J. M. Spector, M. D. Merrill, & M. J. Bishop. (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 841-853). Springer.
  5. Gunes, E., & Bahcivan, E. (2018). A mixed research-based model for pre-service science teachers' digital literacy: Responses to "which beliefs" and "how and why they interact" questions. Computers & Education, 118, 96-106. https://doi.org/10.1016/j.compedu.2017.11.012
  6. Holmes, W., Bialik, M., & Fadel, C. (2023). Artificial intelligence in education . Globethics Publications.
  7. Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2012). NMC horizon report: 2011 Edition . The New Media Consortium.
  8. Khachatryan, G. A., Romashov, A. V., Khachatryan, A. R., Gaudino, S. J., Khachatryan, J. M., Guarian, K. R., & Yufa, N. V. (2014). Reasoning mind genie 2: An intelligent tutoring system as a vehicle for international transfer of instructional methods in mathematics. International Journal of Artificial Intelligence in Education, 24 (3), 333-382.
  9. Kim, M. K., Xie, K., & Cheng, S. L. (2017). Building teacher competency for digital content evaluation. Teaching and Teacher Education, 66 , 309-324. https://doi.org/10.1016/j.tate.2017.05.006
  10. Kim, S. (2021). Prospective mathematics teachers' perceptions of the use of hands-on manipulatives and technological tools in teaching quadratic curves. Journal of the Korean School Mathematics Society, 24 (1), 151-172. https://doi.org/10.30807/ksms.2021.24.1.008
  11. Koh, E. S., & Han, K. (2023). The effect of the elementary school 'smart mathematics exploration team' support system on mathematical academic achievement and mathematical attitude. Journal of The Korean Association of Information Education, 27 (3), 235-243. http://dx.doi.org/10.14352/jkaie.2023.27.3.235
  12. Lee, D., & Yeo, S. (2022). Developing an AI-based chatbot for practicing responsive teaching in mathematics. Computers & Education, 191, 104646. https://doi.org/10.1016/j.compedu.2022.104646
  13. Lin, C. C., Huang, A. Y., & Lu, O. H. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments, 10(1), 41-62. https://doi.org/10.1186/s40561-023-00260-y
  14. Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42 , 1-29. https://doi.org/10.18637/jss.v042.i10
  15. Lubke, G., & Tueller, S. (2010). Latent class detection and class assignment: A comparison of the MAXEIG taxometric procedure and factor mixture modeling approaches. Structural Equation Modeling, 17 (4), 605-628. https://doi.org/10.1080/10705511.2010.510050
  16. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education.
  17. Maderick, J. A., Zhang, S., Hartley, K., & Marchand, G. (2016). Preservice teachers and self-assessing digital competence. Journal of Educational Computing Research, 54 (3), 326-351. https://doi.org/10.1177/0735633115620432
  18. Ministry of Education (2020, September 14). Artificial intelligence, into school! Artificial intelligence (AI), introduced as an elementary math study helper, as an optional course in high school. News from the Ministry of Education. https://www.moe.go.kr/boardCnts/ view.do?boardID=294&board -Seq=81918&lev=0&searchType=null&statusYN=W&page=5&s=moe&m=020402&opType=N
  19. Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108 (6), 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
  20. Moon, J., Yeo, S., Banihashem, S. K., & Noroozi, O. (2024). Using multimodal learning analytics as a formative assessment tool: Exploring collaborative dynamics in mathematics teacher education. Journal of Computer Assisted Learning , 1-19. https://doi.org/10.1111/jcal.13028
  21. Nguyen, L. A. T., & Habok, A. (2024). Tools for assessing teacher digital literacy: A review. Journal of Computers in Education, 11 (1), 305-346. https://doi.org/10.1007/s40692-022-00257-5
  22. Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education, 20 (1), 1-23. https://doi.org/10.1186/s41239-022-00372-4
  23. Schreiber, J. B., & Pekarik, A. J. (2014). Using latent class analysis versus K-means or hierarchical clustering to understand museum visitors. Curator: The Museum Journal, 57 (1), 45-59. https://doi.org/10.1111/cura.12050
  24. Silva, K., Induwara, R., Wimukthi, M., Poornika, S., Samaratunge Arachchillage, U. S. S., & Jayalath, T. (2022). E-tutor: Comprehensive student productivity management system for education. In Proceedings of the 2022 4th International conference on advancements in computing (ICAC) (pp. 108-113). IEEE.
  25. Singh, J., Evans, E., Reed, A., Karch, L., Qualey, K., Singh, L., & Wiersma, H. (2022). Online, hybrid, and face-to-face learning through the eyes of faculty, students, administrators, and instructional designers: Lessons learned and directions for the post-vaccine and post-pandemic/COVID-19 world. Journal of Educational Technology Systems, 50 (3), 301-326. https://doi.org/10.1177/00472395211063754
  26. Tobarra, L., Utrilla, A., Robles-Gomez, A., Pastor-Vargas, R., & Hernandez, R. (2021). A cloud game-based educative platform architecture: The cyberscratch project. Applied Sciences, 11 (2), 1-22. https://doi.org/10.3390/app11020807
  27. Viberg, O., & Mavroudi, A. (2018). The role of ubiquitous computing and the internet of things for developing 21st century skills among learners: Experts' views. In V. Pammer-Schindler, M. Perez-Sanagustin, H. Drachsler, R. Elferink, & M. Scheffel (Eds.), Lifelong technology-enhanced learning. EC-TEL 2018. Lecture notes in computer science, Vol. 11082 (pp. 640-643). Springer.
  28. Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent class analysis: a guide to best practice. Journal of Black Psychology, 46 (4), 287-311. https://doi.org/10.1177/0095798420930932
  29. Xie, K., Kim, M. K., Cheng, S. L., & Luthy, N. C. (2017). Teacher professional development through digital content evaluation. Educational Technology Research and Development, 65, 1067-1103. https://doi.org/10.1007/s11423-017-9519-0
  30. Yim, Y., Ahn, S., Kim, K. M., Kim, J. H., Hong, O. S. (2021). The Effects of an AI-based Class Support System on Student Learning: Focusing on the Case of Toctoc Math Expedition in Korea. The Journal of Korea Elementary Education, 111 (4), 61-73. http://dx.doi.org/10.20972/Kjee.32.4.202112.61