• 제목/요약/키워드: AI : Artificial Intelligence

검색결과 1,968건 처리시간 0.03초

가상 비서와 스마트 스피커에 대한 인식과 기대: 의미 연결망 분석과 감성분석을 중심으로 (Perception of Virtual Assistant and Smart Speaker: Semantic Network Analysis and Sentiment Analysis)

  • 박호현;김장현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.213-216
    • /
    • 2018
  • 인공지능과 음성인식을 기반으로 한 스마트 디바이스의 장점이 부각되면서, 가상 비서(Virtual Assistant)가 인기를 끌고 있다. 가상 비서는 스마트 스피커를 통해 사용자 경험을 제공하며, 일반 소비자들이 가장 사용하기 쉬운 IoT 디바이스로 평가받고 있다. 본 연구는 주요 가상 비서브랜드의 음성인식 플랫폼과 디바이스에 대한 사람들의 인식에 차이가 있는지 살펴보고자 한다. 이를 위해, 트위터에서 가상비서 서비스를 하는 세 기업의 총 6가지 키워드를 포함한 트윗을 수집했다. 수집한 데이터는 의미 연결망 분석 기법(Semantic network analysis)을 적용해 키워드에 대한 사람들의 인식을 분석했다. 추가로 LIWC 감성분석을 통해 사람들의 긍정/부정적 반응을 분석했다. 분석 결과 사람들은 각 키워드에 대한 반응이 다른 것으로 나타났다. 주로 Virtual Assistant가 제공하는 기능과 서비스에 대한 기대와 사용성에 대한 내용이었다. 또한 대부분의 키워드에 긍정적 반응을 보였다.

  • PDF

Intelligent Emergency Alarm System based on Multimedia IoT for Smart City

  • Kim, Shin;Yoon, Kyoungro
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.122-126
    • /
    • 2019
  • These-days technology related to IoT (Internet of Thing) is widely used and there are many types of smart system based IoT like smart health, smart building and so on. In smart health system, it is possible to check someone's health by analyzing data from wearable IoT device like smart watch. Smart building system aims to collect data from sensor such as humidity, temperature, human counter like that and control the building for energy efficiency, security, safety and so forth. Furthermore, smart city system can comprise several smart systems like smart building, smart health, smart mobility, smart energy and etc. In this paper, we propose multimedia IoT based intelligent emergency alarm system for smart city. In existing IoT based smart system, it communicates lightweight data like text data. In the past, due to network's limitations lightweight IoT protocol was proposed for communicating data between things but now network technology develops, problem which is to communicate heavy data is solving. The proposed system obtains video from IP cameras/CCTVs, analyses the video by exploiting AI algorithm for detecting emergencies and prevents them which cause damage or death. If emergency is detected, the proposed system sends warning message that emergency may occur to people or agencies. We built prototype of the intelligent emergency alarm system based on MQTT and assured that the system detected dangerous situation and sent alarm messages. From the test results, it is expected that the system can prevent damages of people, nature and save human life from emergency.

언택트 기술 환경에서의 지능형 헬스 어드바이저 모델 접근 방안 (An Approach of Cognitive Health Advisor Model for Untact Technology Environment)

  • 황태호;이강윤
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.139-145
    • /
    • 2020
  • 4차산업혁명 시대에 인공지능 API에 기반한 정보의 활용은 산업과 생활에 많은 영향을 주고 있다. 특히, 의료분야에서 인공지능을 이용한 데이터 활용은 사회에 많은 변화와 영향을 미칠 것이다. 이 논문은 "Cognitive Health Advisor model(CHA model)"을 구현하기 위하여 필요한 구성요소를 연구하고, 이를 기반으로 "chatbot 이용한 CHA model"을 구현하는데 있다. 개방형 Cognitive 챗봇을 이용하여 일상 생활에서 변화되는 사용자의 건강상태를 파악하고 분석하고 생체센서와 챗봇 상담으로 분석한 사용자의 건강정보는 챗봇을 통하여 사용자에게 정보를 전달하여 사용자의 건강증진을 위한 교육정보를 제공하는 지능형 헬스 어드바이저 모델을 구현한다. 이 구현을 통하여 향후 활용 가능성을 확인하고 연구방향을 제시하고자 한다.

수문학적 가뭄전망을 위한 ANFIS 활용 기법 개발 및 평가 (Development and evaluation of ANFIS-based method for hydrological drought outlook method)

  • 문건호;김선호;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.123-123
    • /
    • 2018
  • 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 초기에 감지한다면 피해를 최소화 할 수 있다. 국내에서는 가뭄전망을 위해 물리적 기반의 기상-수문연계해석 시스템을 구축하여 월 내지 계절전망을 수행하고 있다. 물리적 기반의 가뭄전망은 수치예보모델의 불확실성을 가지고 있으므로 예보 정확도 개선의 측면에서는 통계적 모델을 같이 활용하는 것이 바람직하다. 최근 국외에서는 통계적 방법인 AI (Artificial Intelligence) 기술을 사용하여 가뭄을 전망하는 연구가 활발히 진행 중이나, 아직까지 국내에서는 관련연구가 미흡한 실정이다. 이에 본 연구에서는 ANFIS (Adaptive Neuro-Fuzzy Inference System) 기반의 댐 유입량 예측 모델을 구축하고 SRI (Standardized Runoff Index)를 활용하여 수문학적 가뭄전망을 수행하였다. 대상유역은 국내 주요 다목적댐이 위치한 충주댐 유역과 소양강댐 유역을 선정하였다. 수문 및 기상자료는 국토 교통부 및 기상청의 관측 댐 유입량, 관측 강수량, 관측 기온 및 장기기상예보 자료를 사용하였다. ANFIS 모델 구축을 위한 훈련 및 보정기간과 검정기간은 각각 1987~2010년과 2011~2016년을 선정하였다. 수문학적 가뭄전망은 지속기간 3개월의 1개월 전망 SRI3를 활용하였으며, SRI3는 관측유입량과 예측유입량을 결합하여 산정하였다. 댐 예측유입량 및 수문학적 가뭄전망의 정확도 평가를 위해 상관계수, 평균제곱근오차를 활용하였다. 댐 예측유입량 평가 결과 예측값과 관측값의 상관계수가 높게 나타났으며, 평균제곱근오차는 낮아 예측성이 뛰어났다. SRI3의 경우 관측값과 예측값의 가뭄발생시기가 유사하여 가뭄을 적절하게 반영하는 것으로 나타났다. 본 연구의 결과는 통계적 기반의 수문학적 가뭄전망기법을 개발하였다는 측면에서 의의가 있으며, 향후 물리적 기반의 가뭄전망정보와 결합한다면 보다 실효성이 향상될 것으로 기대된다.

  • PDF

딥러닝 기반 농촌유역 돌발홍수 예경보 시스템 개발 (Development of flash flood guidance system for rural area based on deep learning)

  • 류정훈;강문성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.309-309
    • /
    • 2018
  • 기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.

  • PDF

대학 교육에서 인공지능 기반 적응형 학습 구현을 위한 교수자 인식 및 요구분석 (Analysis of Faculty Perceptions and Needs for the Implementation of AI based Adaptive Learning in Higher Education)

  • 신종호;손정은
    • 디지털융복합연구
    • /
    • 제19권10호
    • /
    • pp.39-48
    • /
    • 2021
  • 인공지능을 활용한 적응형 학습은 최근 국내 대학들이 직면하고 있는 학생들의 기초학력 저하와 학습격차 증가 등의 문제해결을 위한 방편이 될 수 있다. 인공지능 기반 적응형 학습이 성공적으로 대학 수업에 도입되고 실천되기 위해서는 교수자의 적극적인 관심과 참여가 요구된다. 이에 본 연구에서는 대학 교수들을 대상으로 적응형 학습에 대한 인식을 분석하여 대학 수업에서의 적응형 학습 구현을 위한 방안을 제안하고자 하였다. 이를 위하여 수도권 소재 A대학 교수들을 대상으로 온라인 설문을 통해 자료를 수집하였으며, 162명의 교수들이 응답에 참여하였다. 설문 분석 결과 교수들은 학생 맞춤형 피드백 제공의 어려움, 학생들의 사전학습 부족 및 기초학력 저하를 수업 운영에서의 문제로 높게 인식하고 있었다. 또 적응형 학습에 대한 교수들의 지식 수준은 낮았지만, 적응형 학습 적용 의향은 높은 것으로 나타났다. 적응형 학습 적용을 위한 지원방안으로는 활용이 쉽고 유용한 적응형 학습 시스템 제공에 대한 요구가 가장 높았다. 이러한 결과를 바탕으로 대학에서의 적응형 학습 적용의 가능성을 논의하고, 적응형 학습의 성공적 도입과 적용을 위한 구체적인 방안을 제언하였다.

NLP와 BiLSTM을 적용한 조세 결정문의 분석과 예측 (Tax Judgment Analysis and Prediction using NLP and BiLSTM)

  • 이영근;박구락;이후영
    • 디지털융복합연구
    • /
    • 제19권9호
    • /
    • pp.181-188
    • /
    • 2021
  • 일반인에게 난해한 법률분야를 이해하기 쉽고 예측 가능 할 수 있도록 인공지능을 적용한 법률 서비스에 대한 연구의 중요성이 대두되고 있다. 본 연구에서는 조세심판원의 결정정보를 수집하고 데이터 처리와 자체 학습을 통한 모델을 구축하여 사용자의 질의에 맞는 답변을 예측하기 위한 시스템을 제안한다. 제안 모델은 웹크롤링을 통해서 조세 결정문의 정보 수집 및 자연어 처리과정을 통하여 유용한 데이터를 추출하고, 최적화된 산출물을 Word2Vec의 Fast Text 알고리즘을 적용하여 단어의 벡터를 생성하였다. 2017년부터 2019년까지 총 11,103건의 정보를 수집하고 분류하였으며 RNN 기술의 BiLSTM을 적용하여 자체학습을 통한 결과 예측 프로그램을 구축하여 70%정확도로 실증하였다. 향후 다양한 법률시스템으로 활용성을 기대할 수 있으며 보다 효율적인 적용을 위한 연구와 정확도 향상을 위한 연구가 계속되어야 한다.

범죄예측시스템에 대한 퍼지 탐색 알고리즘과 GAN 상태에 관한 연구 (A Study on Fuzzy Searching Algorithm and Conditional-GAN for Crime Prediction System)

  • 카멜리타 아폰소;윤한경
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.149-160
    • /
    • 2021
  • 본 연구에서는 현재 발생한 범죄와 과거 유사 범죄의 기록을 조사하여 용의선상에 오른 자들과 전과자들를 비교 분석하여 범인를 예측하는 시스템을 제안한다. 제안된 시스템은 용의자들과 전과자들의 안면을 비교하기 위하여 조건부 생성 적대 네트워크를 포함하는 퍼지 매칭으로 예상 범인을 선별하는 인공 지능 기반 알고리즘 범죄 예측 시스템(CPS)입니다. 유효성을 증명하기 위하여동 티모르. 범죄 기록의 데이터를 활용하였습니다. 구축 된 알고리즘은 증언을 바탕으로 몽타쥬를 작성하여 범죄 기록상의 전과자 안면과 비교됩니다. 제안 된 알고리즘과 CPS의 결과는 범죄를 처리하는 경찰관의 시간과 노력을 최소화될 뿐만 아니라 신속한 결과를 얻었으므로 유용하다는 것을 확인했습니다. 특히, 동 티므로와 같이 부족한 인적 자원과 예산으로 사회 안전망을 유지하는 것이 어려운 국가에 제안된 시스템의 적용은 미해결 범죄의 감소와 신속한 범죄 수사에 기여할 수 있다.

싸이킷런과 사이버위협 데이터셋을 이용한 사이버 공격 그룹의 분류 (Clasification of Cyber Attack Group using Scikit Learn and Cyber Treat Datasets)

  • 김경신;이호준;김성희;김병익;나원식;김동욱;이정환
    • 융합정보논문지
    • /
    • 제8권6호
    • /
    • pp.165-171
    • /
    • 2018
  • 최근 IT보안의 화두가 되고 있는 가장 위협적인 공격은 APT공격이다. APT공격에 대한 대응은 인공지능기법을 활용한 대응이외에는 방법이 없다는 것이 현재까지의 결론이다. 여기서는 머신러닝 기법을 활용한 사이버위협 데이터를 분석하는 방법, 그 중에서도 빅데이터 머신러닝 프레임웍인 Scikit Learn를 활용하여 사이버공격 사례를 수집한 데이터셋을 이용하여 사이버공격을 분석하는 머신러닝 알고리즘을 구현하였다. 이 결과 70%에 육박하는 공격 분류 정확도를 보였다. 이 결과는 향후 보안관제 시스템의 알고리즘으로 발전가능하다.

빅데이터 기법을 활용한 Data Technology의 키워드 분석 (Keyword Analysis of Data Technology Using Big Data Technique)

  • 박성욱
    • 기술혁신학회지
    • /
    • 제22권2호
    • /
    • pp.265-281
    • /
    • 2019
  • 경제가 성장하고 인터넷이 발전되면서 사람들의 경제형태와 소비는 많이 바뀌었다. 중국 알리바바 그룹은 모바일, 온라인, 오프라인, 인공지능을 결합한 플랫폼으로 약 28조의 매출을 창출하고 있다. 이는 1초에 약 25만건을 처리하는 수준이며, 2016년 대비 40% 증가했다. 이를 가능하게 한 핵심 기술은 소위 Data Technology라고 불리는 빅데이터와 클라우드 컴퓨팅이 융합된 기술이다. 기술의 발전속도에 비해 Data Technology에 관한 정확한 개념적 정의는 부족하다. 이에 본 논문은 빅데이터 분석기법인 TexTom을 활용하여 구글과 네이버의 최근 3개년(2015년 11월~2018년 11월) 신문기사를 데이터 마이닝 및 정제하여 'Data Technology' 키워드로 한정하여 관련 핵심 키워드를 도출하였다. 그 결과 빅데이터, O2O, 인공지능, 사물인터넷, 클라우드 컴퓨팅의 핵심 키워드 기술이 Data Technology와 관계가 있음을 알수 있었다. 본 연구의 분석결과는 향후 Data Technology 시대가 도래되면 참고할 수 있는 유용한 정보로 활용될 수 있다.