• Title/Summary/Keyword: AFM roughness

Search Result 524, Processing Time 0.029 seconds

Effects of various prophylactic procedures on titanium surfaces and biofilm formation

  • Di Salle, Anna;Spagnuolo, Gianrico;Conte, Raffaele;Procino, Alfredo;Peluso, Gianfranco;Rengo, Carlo
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.6
    • /
    • pp.373-382
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results: AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

Study of Refining Effects on Pulp Fibre by Scanning Probe Microscopy(SPM) (Scanning Probe Microscopy를 이용한 고해 효과 연구)

  • ;Keity Roy Wadhams
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.49-58
    • /
    • 1998
  • The SPM could image the most detailed microstructure of a sample in a wet and dry state by measuring the interaction between the atoms on the sample surface and the extremely sharp probe tip. The refined fibre exhibited large wrinkles formed by fibrillar bundles, the disintegrated fibres extensively showed “scale-like features”. By using the Non-Contact Atomic Force Microscopy (NC-AFM) and Contact Atomic Force Microscopy (C-AFM) including Phase Detection Microscopy (PDM) and Force Modulation Microscopy (FMM), it was possible to investigate surface topography, surface roughness and mechanical property (hardness or visco-elasticity) of fibre surface in detail. The PDM and FMM images showed that the disintegrated only fibre displayed uniform mechanical properties, whereas the refined one did not. The surface roughness of pulp fibres was higher in refined fibres than in disintegrated fibres due to the presence of external fibrils. These SPM images would be used to provide visual evidence of morphological change of a single fibre created during mechanical treatments such as refining, drying, calendering and so on.

  • PDF

A Study on the Micro-lapping process of Sapphire Wafers for optoelectronic devices (광반도체용 사파이어웨이퍼 기계연마특성 연구)

  • 황성원;김근주;서남섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.82-85
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by Micro-lapping process. The sapphire crystalline wafers were characterized by DCXD(Double Crystal X-ray Diffraction). The sample quality of crystalline sapphire wafer at surface has a FWHM(Full Width at Half Maximum) of 250 arcsec. This value at the sapphire wafer surfaces indicated 0.12${\mu}{\textrm}{m}$ sizes. Surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Also Surfaces roughness of sapphire wafers were measured 2.1 by AFM(Atom Force Microscope).

  • PDF

AFM and C-F Properties of Ceramic Thin Film with Annealing Method (열처리 방법에 따른 세라믹 박막의 AFM 및 C-F 특성)

  • Choi, Woon-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.598-601
    • /
    • 2015
  • The $Sr_{0.7}Bi_{2.3}Nb_2O_9(SBN)$ thin films are deposited on Pt electrode($Pt/Ti/SiO_2/Si$) using RF sputtering method at various deposition temperature. The deposition temperature of optimum was $300^{\circ}C$. SBN thin films were annealed at $500{\sim}700^{\circ}C$ using furnace and RTA, respectively. The surface roughness showed about 2.42 nm in annealing temperature($600^{\circ}C$) of furnace. The capacitance density of SBN thin films were increased with the increase of annealing temperature. The maximum capacitance density of $0.7{\mu}F/cm^2$ was obtained by annealing temperature($700^{\circ}C$). The frequency dependence of dielectric loss showed about 0.03 in frequency ranges of 1~1,000 kHz.

Nanotribological characteristics of silicon surfaces modified by IBAD (IBAD로 표면개질된 실리콘표면의 나노 트라이볼로지적 특성)

  • 윤의성;박지현;양승호;공호성;장경영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.127-134
    • /
    • 2001
  • Nano adhesion and friction between a Sj$_3$N$_4$ AFM tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and Si-wafer of different surface roughness were used. Results showed that nano adhesion and friction decreased as the surface roughness increased. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the normal load was low.

  • PDF

Local Oxidation Characteristics on Implanted 4H-SiC by Atomic Force Microscopy (원자힘 현미경을 이용한 이온 주입된 4H-SiC 상의 국소 산화 특성)

  • Lee, Jung-Ho;Ahn, Jung-Joon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • In this work, local oxidation behavior in phosphorous ion-implanted 4H-SiC has been investigated by using atomic force microscopy (AFM). The AFM-local oxidation (AFM-LO) has been performed on the implanted samples, with and without activation anneal, using an applied bias (~25 V). It has been clearly shown that the post-implantation annealing process at $1,650^{\circ}C$ has a great impact on the local oxidation rate by electrically activating the dopants and by modulating the surface roughness. In addition, the composition of resulting oxides changes depending on the doping level of SiC surfaces.

UV/ozone Cleaning Processes for Organic Films on Si Studied by in-line XPS and AFM (in-line XPS와 AFM을 이용한 유기물의 UV/ozone 건식세정과정 연구)

  • 이경우;황병철;손동수;천희곤;김경중;문대원;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.261-269
    • /
    • 1995
  • 본 실험에서는 실리콘 웨이퍼 위에 photoresist(PR)와 octadecyltrichlorosilane(OST, CH3((CH2)17SiCI3)를 입혀서 UV/zone 처리를 어떻게 유기물질들이 UV/zone과 반응하여, 어떻게 표면에서 제거되는지를 in-line으로 연결된 XPS로 분석하고 반응시킨 표면들의 거칠기(roughness)를 AFM을 이용하여 관찰하였다. 실험결과 상온에서 UV/zone 처리를 했을 경우, PR과 OTS같은 유기물질이 표면에서 산화되는 것을 알 수 있었으나 이들이 제거되지 않고 표면에 그대로 남아있음을 알 수 있었다. 그러나 가열하면서(PR:$250^{\circ}C$, ORS:$100^{\circ}C$)UV/ozone 처리를 하였을 경우 표면에서 산화됨과 동시에 이들 산화물들이 표면에서 제거됨을 알 수 있었다. XPS 분석으로부터 이들의 산화반응물은 PR과 OTS 모두 -CH2-, -CH2O-, =C=O, -COO-를 가지는 것으로 나타났으며, 열에너지에 의해서 이들이 표면에서 제거되는 것으로 나타났다. AFM 분석결과는 상온에서 UV/ozone 처리를 하였을 경우에 표면의 거칠기가 적은 반면, 가열하면서 UV/o-zone처리를 하였을 경우에는 표면의 거칠기가 다소 증가하였다.

  • PDF

Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study

  • Canetta, Elisabetta;Walker, Graeme M.;Adya, Ashok K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.547-555
    • /
    • 2009
  • Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schizo pombe.

A Study on Adhesive Properties of Cellulose Triacetate Film by Argon Low Temperature Plasma Treatment (아르곤 저온 플라즈마 처리에 의한 CTA 필름의 접착성 연구)

  • Koo Kang;Park Young Mi
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.28-34
    • /
    • 2004
  • The polarizing film application exploits the unique physicochemical properties between PVA(Poly vinyl alcohol) film and CTA(Cellulose triacetate) film. However, hardly any research was aimed at improving the adhesion characteristics of the CTA film by radio frequency(RF) plasma treatment at argon(Ar) gaseous state. In this report, we deal with surface treatment technology for protective CTA film developed specifically for high adhesion applications. After Ar plasma, surface of the films is analyzed by atomic force microscopy(AFM), roughness parameter and peel strength. Furthermore, the wetting properties of the CTA film were studied by contact angle analysis. Results obtained for CTA films treated with a glow discharge showed that this technique is sensitive to newly created physical functions. The roughness and peel strength value increased with an increase in treatment time for initial treatment, but showed decreasing trend for continuous treatment time. The result of contact angle measurement refer that the hydrophilicity of surface was increased. AFM studies indicated that no considerable change of surface morphology occurred up to 3 minutes of treatment time, but a considerable uneven of surface structure resulted from treating time after 5 minutes.