• 제목/요약/키워드: AF relay

검색결과 99건 처리시간 0.027초

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Tight Lower Bound of Optimal Non-Coherent Detection for FSK Modulated AF Cooperative Communications in Rayleigh Fading Channels

  • Tian, Jian;Zhang, Qi;Yu, Fengqi
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.313-318
    • /
    • 2011
  • When wireless channels undergo fast fading, non-coherent frequency shift keying (FSK) (de)modulation schemes may be considered for amplify-and-forward (AF) cooperative communications. In this paper, we derive the bit-error-rate performance of partial non-coherent receiver as a lower bound of the optimal non-coherent receiver for FSK modulated AF cooperative communications. From the simulation and analytical results, it is found that the derived lower bound is very closed to simulation results. This result shows that knowing partial channel state information may not improve system performance significantly. On the other hand, conventional optimal non-coherent receiver involves complicated integration operation. To address the above complexity issue, we also propose a near optimal non-coherent receiver which does not involve integration operation. Simulation results have shown that the performance gap between the proposed near optimal receiver and the optimal receiver is small.

전력 제한된 무선 애드혹 네트워크에서의 적응적 전력할당기법 (Adaptive Power allocation inenergy-constrained wireless ad-hoc networks)

  • 고상;박형근
    • 한국정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.336-342
    • /
    • 2008
  • Amplify and forward(AF)와 decode and forward(DF)의 두 가지 모드에 대하여 네트워크의 네트워크 수명을 극대화할 수 있는 단순한 구조의 전력할당 방식을 제안한다. 네트워크 수명을 극대화하기 위해서는 전송전력을 최소화하는 것뿐만 아니라 전력을 네트워크의 모든 노드에게 균등하게 할당하는 것이 중요하다. 제안된 전력할당기법에서 송신전력은 노드의 잔여전력에 비례하고 목적지 노드에서 요구되는 수신 SNR을 만족하도록 할당된다. 본 논문에서는 AF와 DF의 두 가지 모드에 대하여 할당전력을 계산하였고 시뮬레이션을 통하여 그 성능을 분석하였다. 시뮬레이션 결과 제안된 전력할당 방식은 균등할당방식에 비하여 네트워크 수명을 크게 증가시킬 수 있었다.

Soft Network Coding in Wireless Two-Way Relay Channels

  • Zhang, Shengli;Zhu, Yu;Liew, Soung Chang
    • Journal of Communications and Networks
    • /
    • 제10권4호
    • /
    • pp.371-383
    • /
    • 2008
  • Application of network coding in wireless two-way relay channels (TWRC) has received much attention recently because its ability to improve throughput significantly. In traditional designs, network coding operates at upper layers above (including) the link layer and it requires the input packets to be correctly decoded. However, this requirement may limit the performance and application of network coding due to the unavoidable fading and noise in wireless networks. In this paper, we propose a new wireless network coding scheme for TWRC, which is referred to as soft network coding (SoftNC), where the relay nodes applies symbol-by-symbol soft decisions on the received signals from the two end nodes to come up with the network coded information to be forwarded. We do not assume further channel coding on top of SoftNC at the relay node (channel coding is assumed at the end nodes). According to measures of the soft information adopted, two kinds of SoftNC are proposed: amplify-and-forward SoftNC (AF-SoftNC) and soft-bit-forward SoftNC (SBF-SoftNC). We analyze the both the ergodic capacity and the outage capacity of the two SoftNC schemes. Specifically, analytical form approximations of the ergodic capacity and the outage capacity of the two schemes are given and validated. Numerical simulation shows that our SoftNC schemes can outperform the traditional network coding based two-way relay protocol, where channel decoding and re-encoding are used at the relay node. Notable is the fact that performance improvement is achieved using only simple symbol-level operations at the relay node.

Selection of the Best Two-Hop AF Wireless Link under Multiple Antenna Schemes over a Fading Channel

  • Rahaman, Abu Sayed Md. Mostafizur;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.57-75
    • /
    • 2015
  • In evaluating the performance of a dual-hop wireless link, the effects of large and small scale fading has to be considered. To overcome this fading effect, several schemes, such as multiple-input multiple-output (MIMO) with orthogonal space time block codes (OSTBC), different combining schemes at the relay and receiving end, and orthogonal frequency division multiplexing (OFDM) are used in both the transmitting and the relay links. In this paper, we first make compare the performance of a two-hop wireless link under a different combination of space diversity in the first and second hop of the amplify-and-forward (AF) case. Our second task in this paper is to incorporate the weak signal of a direct link and then by applying the channel model of two random variables (one for a direct link and another for a relayed link) we get very impressive result at a low signal-to-noise ratio (SNR) that is comparable with other models at a higher SNR. Our third task is to bring other three schemes under a two-hop wireless link: use of transmit antenna selection (TAS) on both link with weak direct link, distributed Alamouti scheme in two-hop link and single relay antenna with OFDM subcarrier. Finally, all of the schemes mentioned above are compared to select the best possible model. The main finding of the paper is as follows: the use of MIMO on both hops but application TAS on both links with weak direct link and the full rate OFDM with the sub-carrier for an individual link provide a better result as compared to other models.

자기간섭 제거 기능이 없는 기존 단말을 가지는 양방향 다중입출력 중계 증폭 전송 기법 (Two-Way MIMO AF Relaying Methods Having a Legacy Device without Self-Interference Cancellation)

  • 이경재
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.338-344
    • /
    • 2017
  • 본 논문에서는 송신단, 수신단, 중계 전송단에서 모두 다중 안테나를 가지고 양방향 중계 증폭 전송 방식으로 동작하는 통신 환경을 고려한다. 양방향 중계 전송에서 발생하는 자기 간섭을 한 쪽의 수신단에서는 제거할 수 있고, 다른 한 수신단에서는 제거할 수 없는 상황에서 최대 전송률을 보내기 위해 릴레이 구조를 최적화하는 것을 목표로 한다. 먼저 최대 전송률을 구하기 위하여 GD(gradient descent) 기반의 지역 최적화 알고리즘을 개발하고, 보다 간단한 구조를 가지는 특이값 분해(SVD: singular value decomposition) 기반의 블록 삼각화 방법을 제안한다. 시뮬레이션 결과는 제안하는 양방향 기법들이 기존의 양방향 방법에 비해 자기간섭 제거 기능이 없는 기기가 상용될 때 향상된 성능을 얻는다는 것을 보여준다.

OFDM 신호를 이용한 비동기식 증폭 후 전달 중계망에서의 결합 채널 추정 (Joint Channel estimation in Asynchronous Amplify-And-Forward Relay Networks based on OFDM signaling)

  • 얀이얼;조계문;발라카난;이문호
    • 전자공학회논문지SC
    • /
    • 제46권1호
    • /
    • pp.55-62
    • /
    • 2009
  • 본 논문에서 증폭 후 전달 전송 기법을 사용하는 중계망의 채널 추정을 하는데 있어서 일어나는 문제점을 해결할 수 있는 방법으로 학습 계열(training sequence)을 이용하는 방법을 제안하였다. 현재의 고속 페이딩 채널 환경에서 기존 파일럿의 추정이 적절하지 않아 송신국(source)과 중계국(relay) 사이의 채널과 중계국(relay)과 수신국(destination) 사이의 채널을 결합하여 추정할 경우 많은 문제점이 초래되기에$^{[1{\sim}2]}$ 전송한 신호의 주파수 영역을 선택하여 얻은 정규(Gaussian) 분포에 대하여 최대 우도 함수의 평균을 내어 채널 추정량(estimator)을 유도해 낼 수 있는, 즉, 파일럿 대신에 하나의 OFDM 신호를 사용하여 모든 채널 충격 응답(CIR)을 추정할 수 있는 새로운 방법을 살펴보았다. 컴퓨터 모의실험으로 높은 SNR 영역에서 제안한 채널 추정기(estimator)의 성능이 [1]과 비교하여 약 1dB 정도 높음을 확인할 수 있었다.

Outage Capacity Analysis for Cooperative DF and AF Relaying in Dissimilar Rayleigh Fading Channels

  • 스레스타;장경희
    • 한국통신학회논문지
    • /
    • 제33권4A호
    • /
    • pp.361-370
    • /
    • 2008
  • Cooperative relaying permits one or more relay to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in dissimilar Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.

Efficient Resource Allocation with Multiple Practical Constraints in OFDM-based Cooperative Cognitive Radio Networks

  • Yang, Xuezhou;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2350-2364
    • /
    • 2014
  • This paper addresses the problem of resource allocation in amplify-and-forward (AF) relayed OFDM based cognitive radio networks (CRNs). The purpose of resource allocation is to maximize the overall throughput, while satisfying the constraints on the individual power and the interference induced to the primary users (PUs). Additionally, different from the conventional resource allocation problem, the rate-guarantee constraints of the subcarriers are considered. We formulate the problem as a mixed integer programming task and adopt the dual decomposition technique to obtain an asymptotically optimal power allocation, subcarrier pairing and relay selection. Moreover, we further design a suboptimal algorithm that sacrifices little on performance but could significantly reduce computational complexity. Numerical simulation results confirm the optimality of the proposed algorithms and demonstrate the impact of the different constraints.

Soft-Decision-and-Forward Protocol for Cooperative Communication Networks with Multiple Antennas

  • Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joan
    • Journal of Communications and Networks
    • /
    • 제13권3호
    • /
    • pp.257-265
    • /
    • 2011
  • In this paper, a cooperative relaying protocol called soft-decision-and-forward (SDF) with multiple antennas in each node is introduced. SDF protocol exploits the soft decision source symbol values from the received signal at the relay node. For orthogonal transmission (OT), orthogonal codes including Alamouti code are used and for non-orthogonal transmission (NT), distributed space-time codes are designed by using a quasi-orthogonal space-time block code. The optimal maximum likelihood (ML) decoders for the proposed protocol with low decoding complexity are proposed. For OT, the ML decoders are derived as symbolwise decoders while for NT, the ML decoders are derived as pairwise decoders. It can be seen through simulations that SDF protocol outperforms AF protocol for both OT and NT.