• 제목/요약/키워드: ADP-Ribosylation

검색결과 16건 처리시간 0.025초

ADP-Ribosylation: Activation, Recognition, and Removal

  • Li, Nan;Chen, Junjie
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.9-16
    • /
    • 2014
  • ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • 제5권4호
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.

Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3

  • Kim, Eun-A;Yang, Seung-Ju;Choi, Soo-Young;Lee, Woo-Je;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.458-463
    • /
    • 2012
  • We investigated the mechanisms involved in KHG26377 regulation of glutamate dehydrogenase (GDH) activity, focusing on the roles of SIRT4 and SIRT3. Intraperitoneal injection of mice with KHG26377 reduced GDH activity with concomitant repression of glucose-induced insulin secretion. Consistent with their known functions, SIRT4 ribosylated GDH and reduced its activity, and SIRT3 deacetylated GDH, increasing its activity. However, KHG26377 did not affect SIRT4-mediated ADP-ribosylation/inhibition or SIRT3-mediated deacetylation/activation of GDH. KHG26377 had no effect on SIRT4 protein levels, and did not alter total GDH, acetylated GDH, or SIRT3 protein levels in pancreatic mitochondrial lysates. These results suggest that the mechanism by which KHG26377 inhibits GDH activity and insulin secretion does not involve ADP-ribosylation of GDH by SIRT4 or deacetylation of GDH by SIRT3.

Evidence for a Catalytic Role of Glutamic Acid 233 of Yac-1 in Arginine-Specific ADP-Ribosylation of Murine Lymphocyte

  • Kim, Hyun-Ju
    • Journal of Life Science
    • /
    • 제10권1호
    • /
    • pp.20-23
    • /
    • 2000
  • Mono-ADP-ribosylation, catalyzed by ADP-ribosyltransferases, is a post-translational modification of proteins in which the ADP-ribose moiety of NAD is transferred to an acceptor protein. Previously, we have identified and cloned a glycosylphosphatidylinositol-linked ADP-ribosyltransferase (Yac-1) from mouse lymphoma cells. Yac-1 enzyme contains three regions (region I,II,III) similar to those found in several bacterial toxins and vertebrate ADP-ribosyltransferases. Site-directed mutagenesis was performed to verify the role of Glu 233 in region III. Mutants E233Q, E233D and E233A were inactive for ADP-ribosyltransferase activity. Thus Glu 233 in Yac-1 is essential for enzyme activity, suggesting that Glu 233 in Glu-rich motif near the carboxy terminus plays a catalytic role in ADP-ribosyltransferase activity.

ERp29와 ADP-ribosylation factor 5의 결합특성 (Characterization of ERp29 and ADP-Ribosylation Factor 5 Interaction)

  • 권기상;석대현;김승환;유권;권오유
    • 생명과학회지
    • /
    • 제21권4호
    • /
    • pp.613-615
    • /
    • 2011
  • ERp29는 endoplasmic reticulum (ER) lumen에 존재하는 단백질로 protein disulfide isomerase (PDI) family에 속한다. 비록 관련 연구 결과는 조금 있지만 정확한 생물학적인 기능은 아직 분명하지 않지만, 분비단백질과정과 단백질 folding에 관여하는 것으로 알려 지고 있다. ERp29의 기능 연구를 위하여 yeast two-hybrid screening/GST pull-down assay방법을 사용하여 ERp29-결합단백질인 ADP-ribosylation factor 5 (ARF5)를 동정하였다. 이들의 결합은 정상적인 세포생리상태에서는 결합하지만 ER stress 상태에서는 떨어졌다. 이 결과는 ERp29의 기능 연구를 위하여 하나의 실마리를 제공할 것이다.

Cloning and characterization of ADP-ribosylation factor 1b from the olive flounder Paralichthys olivaceus

  • Son, So-Hee;Jang, Jin-Hyeon;Jo, Hyeon-Kyeong;Chung, Joon-Ki;Lee, Hyung-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제20권6호
    • /
    • pp.10.1-10.7
    • /
    • 2017
  • Small GTPases are well known as one of the signal transduction factors of immune systems. The ADP-ribosylation factors (ARFs) can be classified into three groups based on the peptide sequence, protein molecular weight, gene structure, and phylogenetic analysis. ARF1 recruits coat proteins to the Golgi membranes when it is bound to GTP. The class I duplicated ARF gene was cloned and characterized from the olive flounder (Paralichthys olivaceus) for this study. PoARF1b contains the GTP-binding motif and the switch 1 and 2 regions. PoARF1b and PoARF1b mutants were transfected into a Hirame natural embryo cell to determine the distribution of its GDP/GTP-bound state; consequently, it was confirmed that PoARF1b associates with the Golgi body when it is in a GTP-binding form. The results of the qPCR-described PoARF1b were expressed for all of the P. olivaceus tissues. The authors plan to study the gene expression patterns of PoARF1b in terms of immunity challenges.

Dimethylnitrosamine-Induced Reduction in the Level of Poly-ADP-Ribosylation of Histone Proteins of Blood Lymphocytes - a Sensitive and Reliable Biomarker for Early Detection of Cancer

  • Kma, Lakhan;Sharan, Rajeshwar Nath
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6429-6436
    • /
    • 2014
  • Poly-ADP-ribosylation (PAR) is a post-translational modification of mainly chromosomal proteins. It is known to be strongly involved in several molecular events, including nucleosome-remodelling and carcinogenesis. In this investigation, it was attempted to evaluate PAR level as a reliable biomarker for early detection of cancer in blood lymphocyte histones. PAR of isolated histone proteins was monitored in normal and dimethylnitrosamine (DMN)-exposed mice tissues using a novel ELISA-based immuno-probe assay developed in our laboratory. An inverse relationship was found between the level of PAR and period of DMN exposure in various histone proteins of blood lymphocytes and spleen cells. With the increase in the DMN exposure period, there was reduction in the PAR level of individual histones in both cases. It was also observed that the decrease in the level of PAR of histones resulted in progressive relaxation of genomic DNA, perhaps triggering activation of genes that are involved in initiation of transformation. The observed effect of carcinogen on the PAR of blood lymphocyte histones provided us with a handy tool for monitoring biochemical or physiological status of individuals exposed to carcinogens without obtaining biopsies of cancerous tissues, which involves several medical and ethical issues. Obtaining blood from any patient and separating blood lymphocytes are routine medical practices involving virtually no medical intervention, post-procedure medical care or trauma to a patient. Moreover, the immuno-probe assay is very simple, sensitive, reliable and cost-effective. Therefore, combined with the ease of preparation of blood lymphocytes and the simplicity of the technique, immuno-probe assay of PAR has the potential to be applied for mass screening of cancer. It appears to be a promising step in the ultimate goal of making cancer detection simple, sensitive and reliable in the near future.

Phospholipase D Is Not Involved in Rho A-Mediated Activation of Stress Fiber Formation

  • Leem, Sun-Hee;Shin, In-Cheol;Kweon, Soo-Mi;Kim, Seung-Il;Kim, Jae-Hong;Ha, Kwon-Su
    • BMB Reports
    • /
    • 제30권5호
    • /
    • pp.337-341
    • /
    • 1997
  • In order to investigate the role of a small GTP-binding protein RhoA in lysophosphatidic acid (LPA)-induced stress fiber formation, C3 ADP-ribosyltransferase was prepared by expressing in E. coli and then applied to Rat-2 fibroblasts. C3 transferase isolated from E. coli was as effective as the toxin from Clostridium botulinum in ADP-ribosylation of RhoA. Incubation of the cells with C3 transferase for 2 days induced ADP-ribosylation of RhoA by a dose-dependent manner, with a sub-maximal induction at $25\;{\mu}g/ml$. As expected, LPA-induced stress fiber formation was completely blocked by pre-incubation with C3 transferase for 2 days. However, exogenously added C3 transferase had no significant effect on the formation of phosphatidylethanol by LPA. These results suggested that phospholipase D was not activated by RhoA in the LPA-induced stress fiber formation.

  • PDF

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF