Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.8.040

Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3  

Kim, Eun-A (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
Choi, Soo-Young (Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, and Medical & Bio-material Research Center, Hallym University)
Lee, Woo-Je (Department of Internal Medicine, University of Ulsan College of Medicine)
Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Publication Information
BMB Reports / v.45, no.8, 2012 , pp. 458-463 More about this Journal
Abstract
We investigated the mechanisms involved in KHG26377 regulation of glutamate dehydrogenase (GDH) activity, focusing on the roles of SIRT4 and SIRT3. Intraperitoneal injection of mice with KHG26377 reduced GDH activity with concomitant repression of glucose-induced insulin secretion. Consistent with their known functions, SIRT4 ribosylated GDH and reduced its activity, and SIRT3 deacetylated GDH, increasing its activity. However, KHG26377 did not affect SIRT4-mediated ADP-ribosylation/inhibition or SIRT3-mediated deacetylation/activation of GDH. KHG26377 had no effect on SIRT4 protein levels, and did not alter total GDH, acetylated GDH, or SIRT3 protein levels in pancreatic mitochondrial lysates. These results suggest that the mechanism by which KHG26377 inhibits GDH activity and insulin secretion does not involve ADP-ribosylation of GDH by SIRT4 or deacetylation of GDH by SIRT3.
Keywords
ADP-ribosylation; Deacetylation; Glutamate dehydrogenase; Hyperinsulinism; Thiazole derivatives;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, M. M., Huh, J. W., Yang, S. J., Cho, E. H., Choi, S. Y. and Cho, S.-W. (2005) Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes. FEBS Lett. 579, 4125-4130.   DOI   ScienceOn
2 Yang, S. J., Huh, J. W., Kim, M. J., Lee, W. J., Kim, T. U., Choi, S. Y. and Cho, S.-W. (2003) Regulatory effects of 5'-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85, 581-586.   DOI   ScienceOn
3 Argmann, C. and Auwerx, J. (2006) Insulin secretion: SIRT4 gets in on the act. Cell 126, 837-839.   DOI   ScienceOn
4 Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J. and Zhao, Y. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607-618.   DOI   ScienceOn
5 Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. and Feinberg, A. P. (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. U.S.A. 99, 13653-13658.   DOI   ScienceOn
6 Jorcke, D., Ziegler, M., Herrero-Yraola, A. and Schweiger, K. (1998) Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J. 332, 189-193.   DOI
7 Katagiri, M. and Nakamura, M. (2003) Reappraisal of the 20th-century version of amino acid metabolism. Biochem. Biophys. Res. Commun. 312, 205-208.   DOI   ScienceOn
8 Sener, A. and Malaisse, W. J. (1980) L-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288, 187-189.   DOI   ScienceOn
9 Hoy, M. H., Maechler, P., Efanov, A. M., Wollheim, C. B., Berggren, P. O. and Gromada, J. (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic ${\beta}$-cells. FEBS Lett. 531, 199-203.   DOI   ScienceOn
10 Anno, T., Uehara, S., Katagiri, H., Ohta, Y., Ueda, K., Mizuguchi, H., Moriyama, Y., Oka, Y. and Tanizawa, Y. (2004) Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation. Am. J. Physiol. Endocrinol. Metab. 286, E280-E285.   DOI
11 Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R. and Maechler, P. (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266-276.   DOI   ScienceOn
12 Carobbio, S., Frigerio, F., Rubi, B., Vetterli, L., Bloksgaard, M., Gjinovci, A., Pournourmohammadi, S., Herrera, P. L., Reith, W., Mandrup, S. and Maechler, P. (2009) Deletion of glutamate dehydrogenase in ${\beta}$-Cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284, 921-929.   DOI   ScienceOn
13 Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P. and Verdin, E. (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592.   DOI   ScienceOn
14 Cho, S.-W., Lee, J. and Choi, S. (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. 233, 340-346.   DOI   ScienceOn
15 Choi, S. Y., Hong, J. W., Song, M.-S., Jeon, S. G., Bahn, J. H., Lee, B. Y., Ahn, J.-Y. and Cho, S.-W. (1999) Different antigenic reactivities of bovine brain glutamate dehydrogenase isoproteins. J. Neurochem. 72, 2162-2169.
16 Masmoudi, A. and Mandel, P. (1987) ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26, 1965-1969.   DOI   ScienceOn
17 Frei, B. and Richter, C. (1988) Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry 27, 529-535.   DOI   ScienceOn
18 Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic ${\beta}$ cells. Cell 126, 941-954.   DOI   ScienceOn
19 Lombard, D. B., Alt, F. W., Cheng, H., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M., Bronson, R., Haigis, M., Guarente, L., Farese, R., Weissman, S., Verdin, E. and Schwer, B. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807- 8814.   DOI   ScienceOn
20 Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker C. and Steegborn, C. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801.   DOI   ScienceOn
21 Yang, S. J., Hahn, H. G., Choi, S. Y. and Cho, S.-W. (2010) Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets. BMB Rep. 43, 245-249.   과학기술학회마을   DOI   ScienceOn
22 Bryla, J., Michalik, M., Nelson, J. and Erecinska, M. (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43, 1187-1195.   DOI   ScienceOn
23 Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. and Stanley, C. A. (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J. Mol. Biol. 307, 707-720.   DOI   ScienceOn
24 Stanley, C. A., Lieu, Y. K., Hsu, B. Y., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., Perlman, K., Rich, B. H., Zammarchi, E. and Poncz, M. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 338, 1352-1357.   DOI   ScienceOn
25 Yorifuji, T., Muroi, J., Uematsu, A., Hiramatsu, H. and Momoi, T. (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum. Genet. 104, 476-479.   DOI   ScienceOn
26 MacMullen, C., Fang, J., Hsu, B. Y., Kelly, A., de Lonlay- Debeney, P., Saudubray, J. M., Ganguly, A., Smith, T. J. and Stanley, C. A. (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 86, 1782- 1787.   DOI   ScienceOn
27 Li, C., Allen, A., Kwagh, J., Doliba, N. M., Qin, W., Najafi, H., Collins, H. W., Matschinsky, F. M., Stanley, C. A. and Smith, T. J. (2006) Green tea polyphenols modulated insulin secretion by inhibition glutamate dehydrogenase. J. Biol. Chem. 281, 10214-10221.   DOI   ScienceOn
28 Herrero-Yraola, A., Bakhit, S. M. A., Franke, P., Weise, C., Schweiger, M., Jorcke, D. and Ziegler, M. (2001) Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J. 20, 2404-2412.   DOI   ScienceOn
29 Zolkiewska, A., Nightingale, M. S. and Moss, J. (1992) Molecular characterization of NAD: arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 89, 11352-11356.   DOI   ScienceOn