• Title/Summary/Keyword: ACO algorithm

Search Result 66, Processing Time 0.026 seconds

A Study on Portfolios Using Swarm Intelligence Algorithms (군집 지능 알고리즘을 활용한 포트폴리오 연구)

  • Woo Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.5
    • /
    • pp.1081-1088
    • /
    • 2024
  • While metaheuristics have profoundly impacted various fields, domestic financial portfolio optimization research, particularly in asset allocation, remains underdeveloped. This study investigates metaheuristic algorithms for investment strategy optimization. Results reveal that metaheuristic-optimized portfolios outperform the Dow Jones Index in Sharpe ratios, highlighting their potential to significantly enhance risk-adjusted returns. A comparative analysis of Ant Colony Optimization (ACO) and Cuckoo Search Algorithm (CSA) shows CSA's slight superiority in risk-adjusted performance. This advantage is attributed to CSA's maintained randomness and Lévy flight model, which effectively balance local and global search, whereas ACO may converge prematurely due to path reinforcement. These findings underscore metaheuristics' capacity to maximize expected returns at given risk levels, offering flexible, robust solutions for investment strategy optimization.

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Novel Method of ACO and Its Application to Rotor Position Estimation in a SRM under Normal and Faulty Conditions

  • Torkaman, Hossein;Afjei, Ebrahim;Babaee, Hossein;Yadegari, Peyman
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.856-863
    • /
    • 2011
  • In this paper a novel method of the Ant Colony Optimization algorithm for rotor position estimation in Switched Reluctance Motors is presented. The data provided by the initial assumptions is one of the important aspects used to solve the problems relative to an Ant Colony algorithm. Considering the nature of a real ant colony, it was found that the ants have no primary data for deducing which is the shortest path in their initial iteration. They also do not have the ability to see the food sources at a distance. According to this point of view, a novel method is presented in which the rotor pole position relative to the corresponding stator pole in a switched reluctance motor is estimated with high accuracy using the active and inactive phase parameters. This new method gives acceptable results such as a desirable convergence together with an optimized and stable response. To the best knowledge of the authors, such an analysis has not been carried out previously.

DEVELOPMENT OF A NEW PATH PLANNING ALGORITHM FOR MOBILE ROBOTS USING THE ANT COLONY OPTIMIZATION AND PARTICLE SWARM OPTIMIZATION METHOD (ACO와 PSO 기법을 이용한 이동로봇 최적화 경로 생성 알고리즘 개발)

  • Lee, Jun-Oh;Ko, Jong-Hoon;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.77-78
    • /
    • 2008
  • This paper proposes a new algorithm for path planning and obstacles avoidance using the ant colony optimization algorithm and the particle swarm optimization. The proposed algorithm is a new hybrid algorithm that composes of the ant colony algorithm method and the particle swarm optimization method. At first, we produce paths of a mobile robot in the static environment. And then, we find midpoints of each path using the Maklink graph. Finally, the hybrid algorithm is adopted to get a shortest path. We prove the performance of the proposed algorithm is better than that of the path planning algorithm using the ant colony optimization only through simulation.

  • PDF

Object-Based Road Extraction from VHR Satellite Image Using Improved Ant Colony Optimization (개선된 개미 군집 최적화를 이용한 고해상도 위성영상에서의 객체 기반 도로 추출)

  • Kim, Han Sae;Choi, Kang Hyeok;Kim, Yong Il;Kim, Duk-Jin;Jeong, Jae Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.109-118
    • /
    • 2019
  • Road information is one of the most significant geospatial data for applications such as transportation, city planning, map generation, LBS (Location-Based Service), and GIS (Geographic Information System) database updates. Robust technologies to acquire and update accurate road information can contribute significantly to geospatial industries. In this study, we analyze the limitations of ACO (Ant Colony Optimization) road extraction, which is a recently introduced object-based road extraction method using high-resolution satellite images. Object-based ACO road extraction can efficiently extract road areas using both spectral and morphological information. This method, however, is highly dependent on object descriptor information and requires manual designations of descriptors. Moreover, reasonable iteration closing point needs to be specified. In this study, we perform improved ACO road extraction on VHR (Very High Resolution) optical satellite image by proposing an optimization stopping criteria and descriptors that complements the limitations of the existing method. The proposed method revealed 52.51% completeness, 6.12% correctness, and a 51.53% quality improvement over the existing algorithm.

Application Core Mapping to Minimize the Network Latency on Regular NoC Architectures (규칙적인 NoC 구조에서의 네트워크 지연 시간 최소화를 위한 어플리케이션 코어 매핑 방법 연구)

  • Ahn, Jin-Ho;Kim, Hong-Sik;Kim, Hyun-Jin;Park, Young-Ho;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.117-123
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization(ACO)-based application core ma ins method for implementing network-on-chip(NoC)-based systems-on-chip(SoCs). The proposed method efficiently put application cores to a mesh-type NoC satisfying a given design objective, the network latency. Experimental results using a functional circuit including 12 cores show that the proposed algorithm can produce near optimal mapping results within a second.

Recurrent Ant Colony Optimization for Optimal Path Convergence in Mobile Ad Hoc Networks

  • Karmel, A;Jayakumar, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3496-3514
    • /
    • 2015
  • One of the challenging tasks in Mobile Ad hoc Network is to discover precise optimal routing solution due to the infrastructure-less dynamic behavior of wireless mobile nodes. Ant Colony Optimization, a swarm Intelligence technique, inspired by the foraging behaviour of ants in colonies was used in the past research works to compute the optimal path. In this paper, we propose a Recurrent Ant Colony Optimization (RECACO) that executes the actual Ant Colony Optimization iteratively based on recurrent value in order to obtain an optimal path convergence. Each iteration involves three steps: Pheromone tracking, Pheromone renewal and Node selection based on the residual energy in the mobile nodes. The novelty of our approach is the inclusion of new pheromone updating strategy in both online step-by-step pheromone renewal mode and online delayed pheromone renewal mode with the use of newly proposed metric named ELD (Energy Load Delay) based on energy, Load balancing and end-to-end delay metrics to measure the performance. RECACO is implemented using network simulator NS2.34. The implementation results show that the proposed algorithm outperforms the existing algorithms like AODV, ACO, LBE-ARAMA in terms of Energy, Delay, Packet Delivery Ratio and Network life time.

Using Ant Colony Optimization to Find the Best Precautionary Measures Framework for Controlling COVID-19 Pandemic in Saudi Arabia

  • Alshamrani, Raghad;Alharbi, Manal H.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.352-358
    • /
    • 2022
  • In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.

Bacteria Cooperative Optimization Based on E. Coli Chemotaxis (대장균의 주화성에 근거한 박테리아 협동 최적화)

  • Jeong, Hui-Jeong;Jeong, Seong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.241-244
    • /
    • 2007
  • 본 논문에서는 박테리아의 주화성에 기초한 Bacteria Cooperative Optimization(BCO) 알고리즘을 소개한다. BCO는 Ant Colony Optimization (ACO)처럼 자연계에 존재하는 생명체의 행동양식을 모방하여 만든 최적화 알고리즘으로 크게 초기화, 측정, 행동결정, 이동으로 구성된다. 우리는 먼저 BCO 알고리즘을 설명하고 2차원 함수 최적화 문제를 이용하여 BCO알고리즘과 Genetic Algorithm(GA) 그리고 Bacterial Foraging for Distributed Optimization(BFO)의 성능 측정 결과를 기술한다. 실험 결과 BCO의 성능이 GA나 BFO보다 우수함을 보였다.

  • PDF

A Combined Heuristic Algorithm for Preference-based Shortest Path Search (선호도 기반 최단경로 탐색을 위한 휴리스틱 융합 알고리즘)

  • Ok, Seung-Ho;Ahn, Jin-Ho;Kang, Sung-Ho;Moon, Byung-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.74-84
    • /
    • 2010
  • In this paper, we propose a preference-based shortest path algorithm which is combined with Ant Colony Optimization (ACO) and A* heuristic algorithm. In recent years, with the development of ITS (Intelligent Transportation Systems), there has been a resurgence of interest in a shortest path search algorithm for use in car navigation systems. Most of the shortest path search algorithms such as Dijkstra and A* aim at finding the distance or time shortest paths. However, the shortest path is not always an optimum path for the drivers who prefer choosing a less short, but more reliable or flexible path. For this reason, we propose a preference-based shortest path search algorithm which uses the properties of the links of the map. The preferences of the links are specified by the user of the car navigation system. The proposed algorithm was implemented in C and experiments were performed upon the map that includes 64 nodes with 118 links. The experimental results show that the proposed algorithm is suitable to find preference-based shortest paths as well as distance shortest paths.