• 제목/요약/키워드: ACF(Anisotropic Conductive Adhesive)

검색결과 6건 처리시간 0.026초

High Temperature Reliability Study of Anisotropic Conductive Adhesive for Electronic Components

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.193-196
    • /
    • 2018
  • In this study, we investigated the reliability of anisotropic conductive paste (ACP) and anisotropic conductive films (ACF), which are anisotropic conductive adhesives, applied to automotive touch panels. Adhesive material is also important as a key factor in assembling the touch panel. In order to measure the resistance change of the parts in two kinds of high temperature test, the reliability of the two types of anisotropic conductive adhesives was compared and evaluated through the results of the resistance change. For 615 hours of reliability testing, the anisotropic conductive film exhibited a higher stability in a high temperature environment than the anisotropic conductive paste.

머신비전 기반 ACF 본딩 기법 개발 (Development of a Method for ACF Bonding Based on Machine Vision)

  • 이석원
    • 문화기술의 융합
    • /
    • 제4권3호
    • /
    • pp.209-212
    • /
    • 2018
  • 이방성 도전필름(ACF)을 사용한 본딩은 납땜이 용이하지 않은 이질적인 소재 간 미세 접합을 형성하는데 널리 사용되어진다. 성공적인 ACF 본딩 구현을 위한 3가지 제한조건이 존재한다. 본딩 접촉점은 설정된 작업 시간동안 적절한 압력과 온도를 유지한 헤드에 의해서 압착되어야 한다. 본 논문에서는 머신 비전을 기반으로 한 ACF 본딩기법을 제안하고 실험을 통해 검증한다. 시스템은 본딩 작업대 상의 PCB 위치 및 방향을 계산하고 헤드가 압착되어야 하는 최적의 접촉점을 결정한다. 제안한 시스템이 접촉면 상의 헤드 평탄도를 보장함으로써 접착력을 향상시킬 수 있음을 실험결과를 통해 보여준다.

Navigation Connection용 ACF(Anisotropic Conductive Film)의 수명 예측 (Lifetime Estimation of an ACF in Navigation)

  • 유영창;신승중;곽계달
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1277-1282
    • /
    • 2008
  • Recently LCD panels have becom very important components for portable electronics. In the high density interconnection material, ACF's are used to connect the outer lead of the tape automated bonding to the transparent indium tin oxide electrodes of the LCD panel. ACF consists of an adhesive polymer matrix and randomly dispersed conductive balls. In this study, we analyzed Failure Mode / Mechanism of ACF which is identified Conductive ball Corrsion, Delamination, Crack and Polymer Expansion / Swelling. In ALT(Accelerated Life Test), we select primary stress factors as temperature and humidity. As time passes by, an increase of connection resistance was observed. In conclusion, we have found that high temperature / humidity affects the adhesion.

  • PDF

Anisotropic Conductive Film (ACF) Prepared from Epoxy/Rubber Resins and Its Fabrication and Reliability for LCD

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo
    • Journal of Information Display
    • /
    • 제4권1호
    • /
    • pp.17-23
    • /
    • 2003
  • A thermoset type anisotropic conductive adhesive film (ACAF) comprising epoxy resin and natural butyl rubber (NBR) as the binder, micro-encapsulated imidazole as the curing agent, and Ni/Au coated polymer bead as a conductive particle has been studied. These films have been prepared to respond to requirements such as improved contact resistance, current status less of than 60 ${\mu}m$ and reliability. These films can also be used for connection between the ITO glass for LCD panel and the flexible circuit board. The curing conditions for the connection were 40, 20 and 15 seconds at 150, 170 and 190 $^{\circ}C$, respectively. The initial contact resistance and adhesion strength were 0.5 ${\Omega}/square$ and 0.4 kg/cm under the condition of 30 kgf/$^{cm}^2}$, respectively. After completing one thousand thermal shock cycling tests between -15 $^{\circ}C$ and 100 $^{\circ}C$, the contact resistance was maintained below 0.7 ${\Omega}/square$. Durability against high temperature (80$^{\circ}C$) and high humidity (85 % RH) was also tested to confirm long-term stability (1000 hrs) of the conduction.

평판디스플레이를 위한 열압착법을 이용한 이방성 도전성 필름 접합 (Thermocompression Anisothropic Conductive Films(ACFs) bonding for Flat Panel Displays(FPDs) Application)

  • 박진석;조일제;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.199-204
    • /
    • 2009
  • The effect of temperature on ACF thermocompression bonding for FPD assembly was investigated, It was found that Au bumps on driver IC's were not bonded to the glass substrate when the bonding temperature was below $140^{\circ}C$ so bonds were made at temperatures of $163^{\circ}C$, $178^{\circ}C$ and $199^{\circ}C$ for further testing. The bonding time and pressure were constant to 3 sec and 3.038 MPa. To test bond reliability, FPD assemblies were subjected to thermal shock storage tests ($-30^{\circ}C$, $1\;Hr\;{\leftrightarrow}80^{\circ}C$, 1 Hr, 10 Cycles) and func! tionality was verified by driver testing. It was found all of FPDs were functional after the thermal cycling. Additionally, Au bumps were bonded using ACF's with higher conductive particle densities at bonding temperatures above $163^{\circ}C$. From the experimental results, when the bonding temperature was increased from $163^{\circ}C$ to $199^{\circ}C$, the curing time could be reduced and more conductive particles were retained at the bonding interface between the Au bump and glass substrate.