• Title/Summary/Keyword: AC-DC-AC converter

Search Result 1,024, Processing Time 0.025 seconds

Reduction of DC-Link Capacitance in Single-Phase Non-Isolated Onboard Battery Chargers

  • Nguyen, Hoang Vu;Lee, Sangmin;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.394-402
    • /
    • 2019
  • This paper proposes a single-phase non-isolated onboard battery charger (OBC) for electric vehicles (EVs) that only uses small film capacitors at the DC-link of the AC-DC converter. In the proposed charger, an isolated DC-DC converter for low-voltage batteries is used as an active power decoupling (APD) circuit to absorb the ripple power when a high-voltage (HV) battery is charged. As a result, the DC-link capacitance in the AC-DC converter of the HV charging circuit can be significantly reduced without requiring any additional devices. In addition, some of the components of the proposed circuit are shared in common for the different operating modes among the AC-DC converter, LV charging circuit and active power filter. Therefore, the cost and volume of the onboard battery charger can be reduced. The effectiveness of the proposed topology has been verified by the simulation and experimental results.

A Study on the UPS System based HF-Link AC to DC Converter (고주파 링크 AC/DC 콘버어터를 이용한 UPS 시스템에 관한 연구)

  • Mo, Chang-Ho;Lee, Su-Weon;Kim, Yeeug-Min;Park, Hyun-Chul;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.437-439
    • /
    • 1996
  • In this paper, an UPS system using high-frequency link AC to DC converter is Proposed. The AC to DC converter has sinusoidal input current and high power factor. In this UPS system, the waveform of the output voltage has smaller harmonic contents than those of a conventional UPS system. In this paper, an operating principle of the system is presented. This new control technique of the UPS system is capable of providing a wide range regulated output DC voltage compared with the conventional UPS system. Performance of the system carried out through theoretical and experimental means.

  • PDF

A Study on the Four AC/DC Converter Parallel Operation for a Traction Drive (견인용 AC/DC 컨버터 4병렬 운전에 관한 연구)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Kim, Won-Ho;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2671-2673
    • /
    • 1999
  • Front end AC to DC converters of the boost type are used in traction applications for generating the DC link for the inverters. A GTO based converter is usually switched with a switching frequency of 300 to 500Hz, resulting in low frequency harmonic problems. In order to avoid this, multiple converters with phase shifted carrier signals are used to suppress the low frequency harmonics. A detailed study of an AC to DC converter, parallel operated with reduced sensor and improved power-factor in light load conditions is presented in this paper.

  • PDF

Topology Generation and Analysis of the No Dead Time AC/DC Converter

  • Zheng, Xinxin;Xiao, Lan;Tian, Yangtian
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2014
  • A novel topology generation method for the no dead-time three-phase AC/DC converter is proposed in this study. With this method, a series of no dead time topologies are generated and their operation principles are analyzed. The classic three-phase bridge AC/DC converter can realize a bidirectional operation. However, dead-time should be inserted in the driving signals to avoid the shoot-through problem, which would cause additional harmonics. Compared with the bridge topology, the proposed topologies lack the shoot-through problem. Thus, dead time can be avoided. All of the no dead time three-phase AC/DC converters can realize bidirectional operation. The operating principles of the converters are analyzed in detail, and the corresponding control strategies are discussed. Comparisons of waveform distortion and efficiency among the converters are provided. Finally, 9 KW DSP-based principle prototypes are established and tested. Simulation and experimental results verify the theoretical analysis.

Fault Diagnosis Method of Voltage Sensor in 3-phase AC/DC PWM Converters

  • Kim, Hyung-Seop;Im, Won-Sang;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.384-390
    • /
    • 2012
  • This paper proposes a fault diagnosis method of the line-to-line voltage sensors in 3-phase AC/DC pulse width modulation (PWM) converters. The line-to-line voltage sensors are an essential device to obtain the information of the grid voltages for controlling the 3-phase AC/DC PWM converters. If the line-to-line voltage sensors are mismeasured by various faults, the voltage sensors can obtain wrong information of the grid voltage. It has an adverse effect on the control of the converter. Therefore, the converter causes the unbalance input AC current and the DC-link voltage ripple in the 3-phase AC/DC PWM converter. Hence, fast fault detection and fault tolerant control are needed. In this paper, the fault diagnosis method is proposed and verified through simulations and experiments.

Modeling of Hybrid Generation System with Wind Turbine, Diesel Generator and Flywheel Energy Storage System (풍력-디젤-플라이휘일 하이브리드 발전시스템 모델링에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2979-2984
    • /
    • 2013
  • This paper proposes a modeling and controller design method of Flywheel Energy Storage System(FESS) for solving the unstable operation problem in hybrid generation system with wind turbine and diesel generator applied in island area. FESS is considered as a permanent magnetic synchronous machine connected to flywheel because of its efficiency. The controller of FESS is composed of AC/DC/AC back-to-back converter. The AC/DC converter is designed to charge/discharge according to the frequency variation and the DC/AC converter to operate to keep the DC bus voltage constant. The proposed modeling and controller design method of FESS was applied to hybrid generation system with wind turbine and diesel generator. The unstable operation problem owing to wind variations was solved through simulation results.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

An Improvement On-Line Failure Diagnosis of DC Link Capacitor in PWM Power Converters (PWM 전력 컨버터에서 DC 링크 커패시터의 개선된 온라인 고장 진단)

  • Shon, Jin-Geun;Na, Chae-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.40-46
    • /
    • 2010
  • DC link electrolytic capacitors are widely used in various PWM power converter system, such as adjustable speed driver(ASD) or DC/DC converter. Electrolytic capacitors, which is the most of the time affected by aging effect, plays a very important role for the power electronics system quality and reliability. This objective of this paper is to propose a improvement method to detect the rise of equivalent series resistor(ESR) in order to realize the online failure prediction of electrolytic capacitor for DC link of PWM power converter. The ESR detection scheme is based on the determination of the electrolytic capacitor AC losses calculated from voltage/current measurement using AC coupling. Therefore, the preposed online failure prediction method has the merits of easy ESR computation and circuit simplicity compare with BPF method. Simulation results show the veridity of the proposed on-line ESR estimation method.

Design and Analysis of Resonant Bidirectional AC-DC Converter using Dual Half-Bridge Converter (듀얼 하프브릿지를 이용한 공진형 양방향 AC-DC 전력변환기 해석 및 설계)

  • Byen, Byeng-Joo;Choi, Jung-Muk;Han, Dong-Hwa;Lee, Young-Jin;Seo, Hyun-Uk;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2013
  • In this paper, bidirectional AC-DC converter using dual half-bridge converter is proposed. A transformer leakage inductance in the dual half-bridge converter is used for making resonance with the capacitor of the voltage-doubler, which can help the switched current to be sinusoidal without extra inductive component and also the switching loss can be reduced through operation such as ZVS, ZCS. Both circuit analysis and design guideline are described, and also the feasibility for the proposed converter is shown through the hardware implementation and the experimental results.