• Title/Summary/Keyword: AC-DC-AC converter

Search Result 1,024, Processing Time 0.023 seconds

New DC/AC Soft Switched PWM Converter Having a DC-Link Commutation Circuit (직류측에 Commutation 회로를 갖는 영전압 스위칭 PWM 인버터)

  • Chung, J.H.;Park, S.S.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1158-1160
    • /
    • 1992
  • A new dc/ac soft switched PWM convert having a dc-link commutation circuit is proposed. The commutation circuit implemented by utilizing a series resonant circuit while preparing for zero voltage switching of primary inverter. The converter provides both variable pulse width and position which is fundamentally different than converters. In this paper, the operating principles, design and control considerations analysis of a such a soft switched converter is analyzed.

  • PDF

A novel PFC AC/DC converter for reducing conduction losses (도통손실 저감형 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Choi, Cheul;Park, Sung-Jun;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • This paper presents a novel power factor corrected(PFC) single-stage AC/DC half-bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel powder factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V]output voltage are presented.

  • PDF

Single-Stage AC/DC Converter for Wireless Power Transfer Operating With Robustness in Wide Air Gaps (넓은 공극에서 강인성을 가지고 동작하는 단일전력단 무선전력전송 교류-직류 컨버터)

  • Woo, Jeong-Won;Jang, Ki-Chan;Kim, Min-Ji;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • In the field of electric vehicles and AGVs, wireless power transfer (WPT) charging systems have been developed recently because of its convenience, reliability, and positive environmental impact due to cable and cord elimination. In this study, we propose a WPT charging system using a single stage AC-DC converter that can be reduced in size and weight and thus can ensure convenience. The proposed single-stage AC-DC converter can control a wide output voltage (36-54 VDC) within coupling ranges by using the variable link voltage applied to the WPT resonant circuit through phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype that can operate with an air gap range of 40-50 mm is fabricated and validated through experimental results and analysis.

A Design of AC-DC Converter using Bi-directional Partial Resonant Soft-Switching (양방향 부분공진 소프트 스위칭을 적용한 AC-DC컨버터의 설계)

  • Yun, S.H.;Koh, K.H.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Lee, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1023-1025
    • /
    • 2001
  • This paper proposes a bi-directional current switch with snubber regeneration using Power MOSFETs and this paper proposes to use a loss-less snubber with switching device to perform soft-switching. It results in not only decreasing switching loss in the device drastically, but also improving input ac current waveform distortion. The computer simulation results show that the input current waveform and show the requirements necessary for the elimination of the 3rd harmonic component. We also show the procedure to design the parameters of the converter.

  • PDF

PFC Dual Boost Converter Based on Input Voltage Estimation for DC Inverter Air Conditioner

  • Park, Gwi-Geun;Kwon, Kee-Yong;Kim, Tae-Woong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.293-299
    • /
    • 2010
  • In this paper, a single-phase PFC (Power Factor Correction) dual boost converter based on input voltage estimation is studied for DC inverter air conditioner. It is focused on improving input power factor and power quality to satisfy the recent harmonic current regulation standards. Furthermore the input voltage estimation is introduced for price competitive products. A low cost and reasonable control system is implemented using a specified high-speed 32-bit microprocessor. Their effectiveness are verified through theoretical analysis and experiments.

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

Highly Efficient AC-DC Converter for Small Wind Power Generators

  • Ryu, Hyung-Min
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • A highly efficient AC-DC converter for small wind power generation systems using a brushless DC generator (BLDCG) is presented in this paper. The market standard AC-DC converter for a BLDCG consists of a three-phase diode rectifier and a boost DC-DC converter, which has an IGBT and a fast recovery diode (FRD). This kind of two-stage solution basically suffers from a large amount of conduction loss and the efficiency greatly decreases under a light load, or at a low current, because of the switching devices with a P-N junction. In order to overcome this low efficiency, especially at a low current, a three-phase bridgcless converter consisting of three upper side FRDs and three lower side Super Junction FETs is presented. In the overall operating speed region, including the cut-in speed, the efficiency of the proposed converter is improved by up to 99%. Such a remarkable result is validated and compared with conventional solutions by calculating the power loss based on I-V curves and the switching loss data of the adopted commercial switches and the current waveforms obtained through PSIM simulations.

A Study on PFC Buck-Boost AC-DC Converter by Soft Switching Method (소프트 스위칭형 PFC 승강압 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Seung-Ho;Lee, Bong-Seob;Jung, Do-Young;Shim, Jae-Sun;Im, Jin-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.435-437
    • /
    • 2007
  • Authors propose a PFC(power factor correction) Buck-Boost AC-DC converter by soft switching method. The proposed converter for a discontinuous conduction mode eliminates the complicated control requirement and reduces the size of components. The input current waveform in the converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching.Therefore,the input power factor is nearly unity and the control algorithm is simple. To achieve high efficiency system, the proposed converter is constructed by using a partial resonant technique. The control switches using in the converter are operated with soft switching for a partial resonant. The control switches are operated without increasing their voltage and current stresses by the soft switching method. The result is that the switching loss is very low and the efficiency of converter is high.

  • PDF

A Study on PFC Buck-Boost AC-DC Converter of Soft Switching (소프트 스위칭형 PFC 벅-부스트 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 2007
  • The system efficiency of the proposed Buck-Boost AC-DC converter is increased by soft switching method. The converter includes to merit of power factor correction (PFC) from sinusoidal control of input current. The switching behavior of control switches operates with soft switching by partial resonance, and then the proposed converter has high system efficiency with decrement of switching power loss. The input current waveform in proposed converter is got to be a sinusoidal form of discontinuous quasi-pulse row in proportion to magnitude of AC input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed PFC Buck-Boost converter is analyzed to compare with the conventional PFC Buck-Boost converter. Some computer simulative results and experimental results confirm to the validity of the analytical results.

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.