• Title/Summary/Keyword: AC-AC power converter

Search Result 1,180, Processing Time 0.027 seconds

A Study on the Average Current-Mode Control AC/DC ZVT-Boost Converter with Active-Clamp Method (능동 클램프 방식을 이용한 AC/DC ZVT 승압형 컨버터의 평균전류모드 제어에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lim, Nam-Hyuk;Yoon, Suk-Ho;Chang, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1005-1008
    • /
    • 2001
  • This paper presents average current-mode control AC/DC ZVT(Zero Voltage Transition) Boost Converter. This boost converter perceives feed forward signal of input and feedback signal of output for average current-mode control proposed converter employs active-clamp method for ZVT. This converter gives the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations. This converter also has a high efficiency by active-clamp method. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 150W, 120kHz prototype converter.

  • PDF

Reactive Power Compensation Using Switching Cell Structured Direct PWM AC-AC Converter (스위칭 셀 PWM AC-AC 컨버터를 이용한 단상 무효전력 보상장치)

  • Kim, Sanghun;Kim, Heung-Geun;Cha, Honnyong
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.513-514
    • /
    • 2016
  • 본 논문에서는 스위칭 셀 구조의 직접형 PWM ac-ac 컨버터를 이용한 새로운 단상 무효전력 보상 장치를 제안한다. 제안한 보상기는 최근에 개발된 가변 임피던스 개념을 이용한 무효전력 보상기에서 발전된 형태이다. 기존 보상기에는 시스템 신뢰성에 심각한 악영향을 주는 커뮤테이션 문제가 존재하는데 제안한 보상기에서는 스위칭셀 구조와 결합인덕터로 구성된 ac-ac 컨버터를 사용하여서 커뮤테이션 문제를 해결하였다. 이로인해 기존 시스템에 비해 스위칭 신호 구현이 매우 간편하고 RC 스너버가 필요하지 않으며 결과적으로 매우 신뢰성이 높은 시스템을 구현할 수 있다. 간략화 된 단상시스템을 구축하여 실험을 통해 성능을 검증하였다.

  • PDF

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.

Low-Frequency Harmonic Eliminations on DC/AC Sides of a 3 Phase-Controlled Converter (3상 제어컨버터의 노치법에 의한 출력과 입출력의 저고조파 제거)

  • 홍성태;권순결;이현우;서기영;임근희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.906-915
    • /
    • 1994
  • Line-Current harmonics resulting from ac to dc power conversion interfere with power system operation and reduce power factor, hence resulting in increasing power source unnecessarily. This study describes a 3 phase phase-controlled converter eliminating low frequency harmonics in the output by inserting notches. Notch points are calculated by Newton-raphson method, The impacts of the choppings on ac and dc sides are analyzed in the steady state. Potential applications of the study are dc motor controls, high power dc power supplies for telecommunications, static var compensators and HVDC.

  • PDF

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

A Utility Interactive Photovoltaic Generation System using PWM Converter (PWM 컨버터를 이용한 계통연계형 태양광발전 시스템)

  • Kim D. G.;Chung J. H.;Chung C. B.;Kim S. N.;Lee S. H.;Kang S. W.;Oh B. H.;Lee H. G.;Kim Y. J.;Han K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.133-136
    • /
    • 2004
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Boost AC-DC Converter of High Power Factor and High Efficiency (고역률 고효율 승압형 AC-DC 컨버터)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Park, Ha-Yong;Shim, Jae-Sun;Shim, Sang-Heung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.45-52
    • /
    • 2005
  • This paper is studied on boost AC-DC converter of high power factor and high efficiency for discontinuous current control. The converter operated in discontinuous current control eliminates the complicated circuit control requirement, and reduces a number of components. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and loss-less snubber capacitor. The circuit topology of the converter is simplified. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Development of Operation Control and AC/DC Conversion Integrated Device for DC Power Application of Small Wind Power Generation System (소형 풍력발전시스템의 직류전원 적용을 위한 운전제어 및 AC/DC변환 통합장치 개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.179-184
    • /
    • 2019
  • In many countries, such as developing countries where electricity is scarce, small wind turbines in the form of Off Grid are an effective solution to solve power supply problems. In some countries, the expansion of power systems and the decline of electricity-intensive areas have led to the use of small wind power in urban road lighting, mobile communications base stations, aquaculture and seawater desalination. With this change, the size of the small wind power industry is expected to have greater potential than large-scale wind power. In the case of small wind power generators, the generator is controlled at a variable speed, and the voltage and current generated by the generator have many harmonic components. To solve this problem, the AC to DC converter to be studied in this paper is a three-phase step-up type converter with a single switch. The inductor current is controlled in discontinuous mode, and has a characteristic of having a unit power factor by eliminating the harmonic of the input current. The proposed converter is composed of LCL filter and three phase rectification boost converter at the input stage and a single phase full bridge for grid connection. It is a control system with energy storage system(ESS) that the system stabilization can be pursued against the electric power.

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.

Emission Characteristics of Fluorescent OLED with Alternating Current Power Source Driving Method (교류전원 구동방식에 의한 형광 OLED의 발광 특성)

  • Seo, Jung-Hyun;Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.104-109
    • /
    • 2014
  • To operate organic light emitting device (OLED) with alternating current (AC) power source without AC/DC(direct current) converter, we fabricated the fluorescent OLED and measured the emission characteristics with AC and DC. The OLED operated by AC showed higher maximum current efficiency of 8.2 cd/A and maximum power efficiency of 8.3 lm/W. But current efficiency and power efficiency of AC driven OLED showed worse than DC driven OLED at high voltage above 10 V. This result can be explained by the peak voltage of AC was $\sqrt{2}$ times than DC, In case of low driving voltage the emission characteristics were improved by the peak voltage of AC, but in case of high driving voltage the emission efficiencies were decreased by the roll off phenomena. Finally, serial OLED arrays using twelve OLEDs driven by AC 110 V showed average voltage of 9.17 V, voltage uniformity of 99.0%, average luminance of $1,175cd/m^2$, luminance uniformity of 94.4%.