• Title/Summary/Keyword: AC voltage regulation

Search Result 106, Processing Time 0.037 seconds

Efficient Switch Mode Power Supply Design with Minimum Components for 5W Output Power

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • This paper presents a flyback technology in power conversion aimed at increasing efficiency and power density, reducing cost and using minimum components in AC-DC conversion. The proposed converter provides these features for square waveforms and constant frequency PWM. It is designed to operate in a wide input voltage range of 75-265VAC RMS with two output voltages of 5V and 20V respectively and full load output power of 5W. The proposed converter is suitable for high efficiency and high power density application such as LCDs, TV power modules, AC adapters, motor control, appliance control, telecom and networking products.

Single-Stage Single-Switched AC/DC Converter with Magnetic Coupled Nondissipative Snubber (자기결합 무손실 스너버를 갖는 새로운 고역률 단일전력단 AC/DC 컨버터)

  • 조정욱;문건우;정영석;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.423-431
    • /
    • 1997
  • A new single-stage/single-switched forward converter with magnetic coupled nondissipa-tive snubber is proposed. The proposed converter gives the good power factor correction (PFC), low current harmonic distortion, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor. This proposed converter with magnetic coupled nondissipative snubber is particularly suited for low power level power supply applications.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

A Study for the Switching Method of the Temperature Control System with the Resonance Feature (공진특성을 가지는 온도제어시스템의 스위칭 기법 연구)

  • Park, Hwal-Gon;Park, Cheol-U;Choe, Yeon-Ho;Gu, Bon-Ho;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.87-90
    • /
    • 2003
  • There are generally two temperature control methods using ac voltage regulators - the phase control method and the on-off control method. The phase control method uses thyristor's angles of extinction for the output power regulation and the on-off control method uses the control of on and off times for the output power regulation. Both of methods have the problems that are the unbalance of the three phase and surge current caused system's destruction. The main object of this study proposes a solution of problems of surge currents and unbalance of three phase when thyristor voltage regulator is switching. To solve the problem, It is proposes that the solution of surge currents is using a tap transformer and an additional switch with adjustable resistance and applies zero crossing of switching voltage of two input line to power load. This method is discuss and verified by computer simulations and experiments.

  • PDF

Analysis and Implementation of Single-Stage AC/DC Converter with Magnetic Energy Feedback Technique for Power Factor Correction (역률개선을 위한 자기에너지 궤환기법의 단일전력단 AC/DC 컨버터의 해석 및 구현)

  • 문건우;오관일;전영수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.148-155
    • /
    • 1998
  • A novel single-switch, single-stage, AC/DC forward converter with transformer magnetic energy feedback technique for power factor correction is proposed. The operational principle and analysis of the proposed converter is presented. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulation. The prototype shows the IEC 555-2 requirements are met satisfactorily with nearly unity power factor.

Development of 3.0[kW] class Fuel Cell Power Conversion System(I) (3[kW]급 연료전지용 전력변환장치(I)의 개발)

  • Mun, S.P.;Kwon, S.K.;Suh, K.Y.;Kim, Y.M.;Ryu, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1207-1208
    • /
    • 2006
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%] is obtained over the wide output voltage regulation ranges and load variations.

  • PDF

Development of Single Phase PWM Converter for AC Traction System (교류 철도 차량 시스템용 단상 PWM Converter 개발)

  • Min, S.S.;Cha, J.D.;Hong, S.W.;Kim, S.W.;Park, Y.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.505-508
    • /
    • 1994
  • This paper describes an implementation of a single phase PWM ac/dc converter whose control scheme can be directly applied to the rectification of ac traction system. Power circuit using self-commutated switching devices(GTO) provides input power factor correction with dc voltage regulation. Effective compensation of load variations and line disturbance can be accomplished by real time instantaneous control of ac input current and dc link voltage using 32 bit floating point DSP. Parallel operation of two converters reduces the input line current ripple. Experimental results of the two parallel converter system are shown in the 20KW range for the verification of the system.

  • PDF

High Power Factor Three-phase AC-DC Flyback Converter Module Using Zero Voltage Switching (영전압 스위칭을 이용한 고역률 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Song, J.H.;Choy, I.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2701-2703
    • /
    • 1999
  • A new mode of parallel operation of a modular 3-phase AC-DC Flyback converter for high power factor correction along with tight regulation is presented in this thesis. The converter offers input/output transformer isolation for safety, a unity input power factor for minimum reactive power, high efficiency and high power density for minimum weight and volume. Compared with previously developed 3-phase two-stage power converter, the advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper, a detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

Parallel Connected High Frequency AC Link Inverters Based on Full Digital Control

  • Sha, Deshang;Guo, Zhiqiang;Deng, Kai;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.595-603
    • /
    • 2012
  • This paper presents a full digital control strategy for parallel connected modular inverter systems. Each modular inverter is a high frequency (HF) AC link inverter which is composed of a HF inverter and a HF transformer followed by a cycloconverter. To achieve equal sharing of the load current and to suppress the circulating currents among the modules, a three-loop control strategy, consisting of a common output voltage regulation (OVR) loop, individual circulating current suppression (CCS) loops and individual inner current tracking (ICT) loops, is proposed. The ICT loops are implemented with predictive current control from which high precision current tracking can be obtained. The effectiveness of the proposed control strategy is verified by simulation and experimental results from parallel connected two full-bridge HF AC link inverter modules.

Novel Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Park, Ju-Yeop;Lee, Jong-Pil;Kim, Taek-Yong;Song, Joong-Ho;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.212-219
    • /
    • 2002
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper tile detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purpose and also experimental results are included to confirm the validity of the analysis.