• Title/Summary/Keyword: AC railway feeding

Search Result 39, Processing Time 0.023 seconds

Performance verification on the Impedance Relay Method using Failure Simulator of AT Feeding System (AT 급전계통 고장 모의시험장치를 활용한 임피던스 계전방식의 성능검증)

  • Kim, Wan-il;Lee, Kye-Seung;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.325-330
    • /
    • 2018
  • In this paper, we investigated the impedance method for searching fault detection point in case of an accident in the AC electric railway AT feeding system. For this purpose, simulation circuit modeling and prototype hardware are made based on the known numerical analysis. As a result of simulation modeling of the feeding system based on the numerical analysis of the impedance method confirmed that the modeling was properly implemented with an average error rate of 0.07%. Also, as a result of fault event by hardware simulator, it was confirmed that the breaker operation time is shortened and the fault current is decreased while the voltage is close to the supply voltage in the transient state as the point of the fault accident moves away from the substation(SS).

Development of Regenerative Inverter for Electric Railway Using Space Vector PWM (SVPWM을 이용한 전기철도용 회생 인버터 개발)

  • Jung M.G.;Baek B.S.;Kim T.W.;Ryu S.P.;Kim N.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.15-18
    • /
    • 2003
  • The electric power, regenerated while railway vehicles braking or running downhill, makes U line voltage rise and the feeding system may not be secure. In order to keep away from these kind of insecurity, the regenerative energy should be consumed by loads or transmitted to the AC side via certain devices such as DC/AC converters. This paper introduces the developed regenerative inverter for electric railway.

  • PDF

Applying New Algorithm on AC Auto-Transformer Feeding System under Multiple Trains Operating (AT 교류 철도급전계통 내 다수 열차 운행시 새로운 계통해석 알고리즘 연구)

  • 전용주;추동욱;전명수;임성정;김재철
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.712-719
    • /
    • 2000
  • This paper presents a new algorithm to analyze a train voltages of multi-trains in auto-transformer-fed AC railway systems, using electrical equivalent change. The train current will be divided into circulation and return currents, and these current values are the same. By evaluating each current independently, the result will be more precise. The train current flows through the all auto-transformer corresponding to track impedance. In analyzing the railway system, the algorithm is based on the K.C.L, K.V.L, superposition and circuit separation method. Multi-train's voltages are determined by calculating the catenary voltage at each train's position and adding up these train's voltage drop. Case studies use a field operational data, show that tile proposed method is easily applied.

  • PDF

Analysis of the amplification of Harmonic Current Using EMTDC in Kyongbu High-Speed Railway (EMTDC를 이용한 경부고속철도 고조파 전류 확대율 해석)

  • Lee H.M;Lee C.M
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1379-1381
    • /
    • 2004
  • This paper presents the AC electric railway system modeling using PSCAD/EMTDC program. This system model is composed of the scott-transformer the auto-transformer. the running rails. the protection wires, the feeders. the catenary and contact wires, etc. After obtaining the models of the fundamental elements describing the AC electric railway system and its behavior, we have analyzed and tested real traction power feeding system focused on the amplification of harmonic current to verify the proposed model. The simulation results from the proposed approach and the measurement data from the test are described in the paper.

  • PDF

Manufacture of Real-time Power Simulator for Electric Railway (전기철도용 실시각 급전시뮬레이터 제작)

  • Jang, Dong-Uk;Chung, Sang-Gi;Kim, Hyol-Chul
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1473-1479
    • /
    • 2009
  • Recently, the high speed train was operated and then the train system's reliability requirements are growing more and more. The exact prediction simulation is necessary in the design of power feeding system by the increase of railway electrification. In order to develope the AC feeding system analysis technology, real-time power simulator was manufactured. It is composed to eight channels analog input, forty channels analog output and forty-eight channels digital I/O. The size of simulator rack is 19" and the two I/O boards are installed the PXI chassis built into the real time os. The signal I/O is possible through BNC connector. The test results of manufactured simulator are obtained that the error range of analog I/O signal is below 1 % and simulation condition is set to 1 ms and the simulation output of the analog output compares the results of the simulator.

  • PDF

A Study on Electric Circuit Modeling and Analysis for AC Railway System (전기철도 교류급전 시스템의 회로 모델링 및 해석기법 연구)

  • 창상훈;김주락;홍재승;오광해;김정훈
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.4
    • /
    • pp.219-228
    • /
    • 2000
  • This paper presents an advanced approach to simulate AC electric railway system in steady-state. The algorithm consists of two parts. One is circuit modeling of elements of electric railway system, the other is an analysis on electric circuit. The modeling procedure has two steps, in the first step, proposed is the modeling method which is considered to be an internal impedance of the autotransformers and mutual impedances between the feeding systems. For the load(locomotives) modeling which is the second step, improved results are obtained as application to the proposed constant power model compared with constant impedance model. In the analysis on electric circuit, a generalized analysis method using the loop equation has been proposed and there is no limit in the number of trains between the ATs. In addition, the computer simulation by the proposed model was practiced. Simulation result seems very reasonable. It is therefore concluded that techniques for the electric circuit modeling and analysis have been established. Accuracy of the techniques will be further investigated.

  • PDF

A Study on Fault Location Estimation Technique Using the distribution Ratio of Catenary Current in AC Feeding System (전차선 전류 분류비를 이용한 교류전기철도 고장점 표정기법에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Min, Myung-Hwan;Shin, Myong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.404-410
    • /
    • 2011
  • In AC feeding system, the fault location is calculated by using ratio of current absorbed in the neutral point of AT(Automatic Transformer) or by measuring reactance. In this way, however, an estimation error can be happened due to the many reasons. In addition, for measuring currents in the neutral point of AT, other measuring devices and communication equipments are additionally required. In order to solve the disadvantages, this paper suggests a novel technique using the distribution ratio of catenary current. The proposed technique uses existing protective relays and measures catenary current. With the measured data, we can calculate the distribution ratio of catenary current and determine fault location. Through the simulated results, we derived the correlation between current ratio and fault location. Using this technique, additional equipments and expenses can be reduced. Besides, fault location can be determined more correctly.

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

A Study on the Propagation of Harmonic Current in the Traction Power Supply System (철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구)

  • Oh, K.H.;Chang, S.H.;Han, M.S.;Lee, C.M.;Shin, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

A Study on the Voltage Drop Compensation in AC Electric Railway (교류 전기철도의 전압강하 보상에 관한 연구)

  • Han S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.896-899
    • /
    • 2003
  • The electric railway has been widely used as a transportation all over the world. It also was opened in 1973 in korea and it has been steadily proceeded in making electric railway network for a big city and building Keongbu high speed , electric railway. That's why the system of electric railway is able to solve the environmental pollution and operate the useful energy in environmental ways, it helps to increase the ability of transportation and to decrease the cost. Because of the advantage of making the economic situation better, the system of electric railway is trying to do their best in developing technique of electric railway. Because of the increasing of transportation and the high speed operation, cars with regenerative braking system was adapted. Therefore, unbalanced voltage and current of three phase system and the drop and rise of voltage of feeding circuit is expected. Now that building the substation, newly spends lots of costs and time, it is a very difficult situation to solve the problem. We can guess that electric railway line can't receive power from the power system of bigger size in building newly electric railway. In this paper, it was proved that series voltage compensator was suitable as a solution according to voltage drop and voltage fluctuating through computer simulation.

  • PDF