• 제목/요약/키워드: AC(Activated Carbon)

검색결과 212건 처리시간 0.021초

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min;Lee, Seul-Yi;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.112-115
    • /
    • 2011
  • The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성 (Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination)

  • 임재원;정의경;정민정;이상익;이영석
    • 공업화학
    • /
    • 제22권4호
    • /
    • pp.405-410
    • /
    • 2011
  • 본 연구에서는 고용량 EDLC 전극의 제조를 위하여 전극의 활물질인 활성탄소에 $NF_3$ 가스를 이용하여 아미노불소화 반응을 유도하였다. 또한, 아미노불소화 반응에 의한 활성탄소의 기공 및 표면화학적 특성 변화와 그로부터 제조된 활성탄소전극의 비정전용량 특성 변화에 대하여 고찰하였다. 활성탄소의 아미노불소화 반응은 재료의 표면 기공특성을 저하시키지 않고 비표면적 및 기공부피 등의 기공특성을 유지시키면서 활성탄소의 표면에 전기화학적 특성의 향상에 도움이 되는 질소 및 불소 관능기를 효과적으로 도입시켰다. 1 at% 이하의 질소 및 불소 관능기가 도입된 활성탄소전극 (E-NF100AC)은 2 mV/s의 전압주사속도 조건에서 528 (${\pm}9$) F/g의 비정전용량으로 미처리 활성탄소전극(E-RAC)과 비교하여 약 122%의 용량증대효과를 나타내었다. 반면에, E-NF200AC의 조건에서는 1 at% 이상, 과량의 불소 관능기가 도입됨에 따라 E-NF100AC에 비하여 용량이 감소하였으며 이러한 결과로부터 적당량의 질소 및 불소 관능기 도입이 활성탄소전극의 비정전용량을 효과적으로 증가시킴을 확인할 수 있었다.

정수기용 입상활성탄소 필터의 흡착특성에 관한 고찰 (Adsorption Characteristics of Granular Activated Carbon Filter Used for Drinking Water Purifier)

  • 백영만;박제철;김형진
    • 한국환경과학회지
    • /
    • 제17권8호
    • /
    • pp.899-905
    • /
    • 2008
  • Quality test for activated carbon(AC) filter used for drinking water purifier is now an obligatory test and the standard material for valid purifying amount in water purifier performance test has been changed from residual chlorine to chloroform according to the notice of Ministry of Environment in 2006. Therefore, this study aimed to compare the ingredients of AC filters by confirming chloroform removal rate of AC filter and conducting 4 adsorption tests (Iodine, methylene blue decolorization, phenol value, ADS value) for AC filters provided by manufacturers. With water pressure of $1kgf/cm^2$, 1,500 liters of prepared inflow went through to check chloroform removal rate. As a result, product with removal rate of below 60% from all products. On the other hand, 4 adsorption tests were conducted for filters in the market and filters from manufacturers. None of the products satisfied all 4 tests. In particular, they showed great shortage to the standard in phenol value and ADS value test. However, manufacturers' filter showed much better performance than filters in the market. Also, the result of valid purifying amount test for each of five products of appropriate product and inappropriate product based on filter quality test showed average 4,440 liters for appropriate product and average 2,620 liters for inappropriate product. According to the result, it is shown that the filter with good adsorption also had good chloroform removal efficiency and adsorption efficiency. Therefore, it is expected that customers can screen good quality product through obligatory conduct of filter quality test. However, it is considered that complementation in system is required for future inspection.

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • 제14권4호
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon

  • Choi, Hyun-Doc;Park, Sung-Woo;Ryu, Byung-Gon;Cho, Jung-Min;Kim, Kyung-Jo;Baek, Ki-Tae
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.153-157
    • /
    • 2009
  • Arsenic at abandoned mine sites has adversely affected human health in Korea. In this study, the feasibility of using cationic surfactant-modified activated carbon (MAC) to remove As(V) was evaluated in terms of adsorption kinetics, adsorption isotherms, and column experiments. The adsorption of As(V) onto MAC was satisfactorily simulated by the pseudo-second-order kinetics model and Langmuir isotherm model. In column experiments, the breakthrough point of AC was 28 bed volumes (BV), while that of MAC increased to 300 BV. The modification of AC using cationic surfactant increased the sorption rate and sorption capacity with regard to As(V). As a result, MAC is a promising adsorbent for treating As(V) in aqueous streams.

Adsorption of Pb(II) Ions from Aqueous Solution Using Activated Carbon Prepared from Areca Catechu Shell: Kinetic, Isotherm and Thermodynamic Studies

  • Muslim, A.;Aprilia, S.;Suha, T.A.;Fitri, Z.
    • 대한화학회지
    • /
    • 제61권3호
    • /
    • pp.89-96
    • /
    • 2017
  • This study proposed adsorption of Pb(II) ions from aqueous solution using activated carbon prepared from areca catechu shell (ACS AC) using Timphan Method. The effects of independent variables on adsorption kinetic and isotherm have been investigated by conducting experiments in batch mode at neutral pH. The structural characterization of adsorbent was done by FT-IR and SEM analysis. The Pb(II) adsorption was correlated very well with the pseudo second-order kinetic (PSOKM) and Langmuir isotherm models (LIM). Increasing NaOH mass for activation and adsorption temperature increased weakly all the parameters of adsorption kinetic and isotherm. The Pb(II) ions adsorption capacity of the ACS AC at 27 and $45^{\circ}C$ was 50.51 and 55.25 mg/g, respectively. Thermodynamic parameters were determined, and the results confirmed the Pb(II) ions adsorption should be endothermic and spontaneous process, and both physical and chemical adsorption should be taken place.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리 (In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles)

  • 이현민;정지현;최용주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

Characterization of AC/TiO2 Composite Prepared with Pitch Binder and Their Photocatalytic Activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1423-1428
    • /
    • 2006
  • In this study, we have prepared pitch binded AC (activated carbon)/$AC/TiO_2$ composites photocatalysts through carbon tetrachloride solvent method. The developed samples were characterized with surface properties, structural crystallinity between AC and $AC/TiO_2$, elemental identification and photocatalytic activity. The results of the textural surface properties demonstrate that there are slight increases in the BET surface area and adsorbed volume from adsorption isotherm of composite samples with increasing of the amount of AC. The SEM results present to the characterization of porous texture on the pitch/AC/$AC/TiO_2$ composites and homogenous compositions in the particle for all the materials used. From XRD data, a weak and broad carbon peak of graphene remained rutile peaks kept with anatase structure were observed in the X-ray diffraction patterns for the pitch/AC/$AC/TiO_2$ composites. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of the pitch/AC/$AC/TiO_2$ composites between relative concentration ($c/c_o$) of MB and UV irradiation time could be attributed to the both effects between photocatalysis of the supported $AC/TiO_2$ and adsorptivity of the two kinds of carbons.