Browse > Article
http://dx.doi.org/10.7857/JSGE.2022.27.1.001

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles  

LEE, Hyeonmin (Department of Civil and Environmental Engineering, Seoul National University)
JUNG, Jihyeun (Department of Civil and Environmental Engineering, Seoul National University)
CHOI, Yongju (Department of Civil and Environmental Engineering, Seoul National University)
Publication Information
Journal of Soil and Groundwater Environment / v.27, no.1, 2022 , pp. 1-16 More about this Journal
Abstract
In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.
Keywords
Activated carbon; Stabilization; Remediation; Sediment; Sorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chiou, C.T., Peters, L.J., and Freed, V.H., 1979, A physical concept of soil-water equilibria for nonionic organic compounds, Science, 206(4420), 831-832.   DOI
2 Cho, Y.M., Smithenry, D.W., Ghosh, U., Kennedy, A.J., Mill-ward, R.N., Bridges, T.S., and Luthy, R.G., 2007, Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness, Mar. Environ. Res., 64(5), 541-555.   DOI
3 Cho, Y.M., Ghosh, U., Kennedy, A.J., Grossman, A., Ray, G., Tomaszewski, J.E., Smithenry, D.W., Bridges, T.S., and Luthy, R.G., 2009, Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment, Environ. Sci. Technol., 43(10), 3815-3823.   DOI
4 Zimmerman, J.R., Werner, D., Ghosh, U., Millward, R.N., Bridges, T.S., and Luthy, R.G., 2005, Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments, Environ. Toxicol. Chem., 24(7), 1594-1601.   DOI
5 Choi, Y., Cho, Y.M., Gala, W.R., and Luthy, R.G., 2013, Measurement and modeling of activated carbon performance for the sequestration of parent-and alkylated-polycyclic aromatic hydrocarbons in petroleum-impacted sediments, Environ. Sci. Technol., 47(2), 1024-1032.   DOI
6 Choi, Y., Cho, Y.M., Werner, D., and Luthy, R.G., 2014, In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 2. Mass transfer modeling, Environ. Sci. Technol., 48(3), 1843-1850.   DOI
7 Choi, Y., Cho, Y.M., Gala, W.R., Hoelen, T.P., Werner, D., and Luthy, R.G., 2016b, Decision-making framework for the application of in-situ activated carbon amendment to sediment, J. Hazard. Mater., 306, 184-192.   DOI
8 Cornelissen, G., Elmquist Krusa, M., Breedveld, G.D., Eek, E., Oen, A.M.P., Arp, H.P.H., Raymond, C., Samuelsson, G., Hedman, J.E., Stokland, O., and Gunnarsson, J.S., 2011, Remediation of contaminated marine sediment using thin-layer capping with activated carbon-A field experiment in Trondheim Harbor, Norway, Environ. Sci. Technol., 45(14), 6110-6116.   DOI
9 Fan, D., Gilbert, E.J., and Fox, T., 2017, Current state of in situ subsurface remediation by activated carbon-based amendments, J. Environ. Manage., 204(2), 793-803.   DOI
10 Cornelissen, G., Breedveld, G.D., Naes, K., Oen, A. M.P., and Ruus A., 2006, Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: Freely dissolved concentrations and activated carbon amendment, Environ. Toxicol. Chem., 25(9), 2349-2355.   DOI
11 Ghosh, U., Kane Driscoll, S., Burgess, R.M., Jonker, M.T., Reible, D., Gobas, F., Choi, Y, Apits, S.E., Maruya, K.A., Gala, W.R., Mortimer, M., and Beegan, C., 2014, Passive sampling methods for contaminated sediments: Practical guidance for selection, calibration, and implementation, Integr. Environ. Assess. Manag., 10(2), 210-223.   DOI
12 Heijden, S.A.V.D. and Jonker, M.T., 2009, PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation, Environ. Sci. Technol., 43(10), 3757-3763.   DOI
13 Janssen, E.M.L., Choi, Y., and Luthy, R.G., 2012, Assessment of nontoxic, secondary effects of sorbent amendment to sediments on the deposit-feeding organism Neanthes arenaceodentata, Environ. Sci. Technol., 46(7), 4134-4141.   DOI
14 Patmont, C.R., Ghosh, U., LaRosa, P., Menzie, C. A., Luthy, R.G., Greenberg, M.S., Cornelissen, G. Eek, E., Collins, J., Hull, J., Hjartland, T., Glaza, E., Bleiler, J., and Quadrini, J., 2015, In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology, Integr. Environ. Assess. Manag., 11(2), 195-207.   DOI
15 Rakowska, M.I., Kupryianchyk, D., Harmsen, J., Grotenhuis, T., and Koelmans, A.A., 2012, In situ remediation of contaminated sediments using carbonaceous materials, Environ. Toxicol, Chem., 31(4), 693-704.   DOI
16 Di Toro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Allen, G.E, Thomas, N.A., and Paquin, P.R., 1991, Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning, Environ. Toxicol. Chem., 10(12), 1541-1583.   DOI
17 Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D., and Menzie, C.A., 2011, In-situ sorbent amendments: A new direction in contaminated sediment management, Environ. Sci. Technol., 45(4), 1163-1168.   DOI
18 Ghosh, U., Zimmerman, J.R., and Luthy, R.G., 2003, PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability, Environ. Sci. Technol., 37(10), 2209-2217.   DOI
19 Hawthorne, S.B., Grabanski, C.B., and Miller, D.J., 2006, Measured partitioning coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: Part 1. Koc values., Environ. Toxicol. Chem., 25(11), 2901-2911.   DOI
20 Hong, L. and Luthy, R.G., 2007, Availability of polycyclic aromatic hydrocarbons from lampblack-impacted soils at former oil-gas plant sites in California, USA, Environ. Toxicol. Chem., 26(3), 394-405.   DOI
21 Abel, S. and Akkanen, J., 2019, Novel, activated carbon-based material for in-situ remediation of contaminated sediments, Environ. Sci. Technol., 53(6), 3217-3224.   DOI
22 American Society for Testing and Materials, 2005, ASTM D5158-98 Standard Test Method for Determination of Particle Size of Powdered Activated Carbon by Air Jet Sieving, American Society for Testing and Materials, West Conshohocken, PA, USA.
23 Beckingham, B. and Ghosh, U., 2011, Field-scale reduction of PCB bioavailability with activated carbon amendment to river sediments, Environ. Sci. Technol., 45(24), 10567-10574.   DOI
24 Hale, S.E. and Werner, D., 2010, Modeling the mass transfer of hydrophobic organic pollutants in briefly and continuously mixed sediment after amendment with activated carbon, Environ. Sci. Technol., 44(9), 3381-3387.   DOI
25 Cornelissen, G., Amstaetter, K., Hauge, A., Schaanning, M., Beylich, B., Gunnarsson, J.S., Breedceld, G.D., Oen, A.M.P., and Eek, E., 2012, Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway: Physicochemical effects, Environ. Sci. Technol., 46(21), 12030-12037.   DOI
26 Liu, H.H., Bao, L.J., and Zeng, E.Y., 2014, Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Analyt. Chem., 54, 56-64.   DOI
27 Lydy, M.J., Landrum, P.F., Oen, A.M., Allinson, M., Smedes, F., Harwood, A.D., Li, H., and Liu, J., 2014, Passive sampling methods for contaminated sediments: State of the science for organic contaminants, Integr. Environ. Assess. Manag., 10(2), 167-178.   DOI
28 Sanders, J.P., Andrade, N.A., Menzie, C.A., Amos, C.B., Gilmour, C.C., Henry, E.A., Brown, S.S., and Ghosh, U., 2018, Persistent reductions in the bioavailability of PCBs at a tidally inundated Phragmites australis marsh amended with activated carbon., Environ. Toxicol. Chem., 37(9), 2496-2505.   DOI
29 Swoboda, A.R. and Thomas, G.W., 1968, Movement of parathion in soil columns, J. Agric. Food Chem., 16(6), 923-927.   DOI
30 U.S. EPA, 2003, Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures, EPA 600/R-02/013, Washington, DC, USA.
31 정재윤, 장윤영, 2020, 농축산저수지 오염퇴적토의 토양정화기술에 대한 적용성 연구, 환경영향평가, 29(3), 157-181.   DOI
32 Accardi-Dey, A. and Gschwend, P.M., 2002, Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments, Environ. Sci. Technol., 36(1), 21-29.   DOI
33 Ahn, S., Werner, D., and Luthy, R.G., 2005, Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation, Environ. Toxicol. Chem., 24(9), 2185-2195.   DOI
34 American Society for Testing and Materials, 2010, ASTM D 2862-10 Standard Test Method for Particle Size Distribution of Granular Activated Carbon, American Society for Testing and Materials, West Conshohocken, PA, USA.
35 Beckingham, B. and Ghosh, U., 2013, Polyoxymethylene passive samplers to monitor changes in bioavailability and flux of PCBs after activated carbon amendment to sediment in the field, Chemosphere, 91(10), 1401-1407.   DOI
36 Bailon, M.X., David, A.S., Park, Y., Kim, E., and Hong, Y., 2018, Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea, Environ. Monit. Assess., 190(274).
37 U.S. EPA, 2008, Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Compendium of Tier 2 values for nonionic organics, EPA 600/R-02/016, Washington, DC, USA.
38 McLeod, P.B., van den Heuvel-Greve, M.J., Allen-King, R.M., Luoma, S.N., and Luthy, R.G., 2004, Effects of particulate carbonaceous matter on the bioavailability of benzo [a] pyrene and 2, 2', 5, 5'-tetrachlorobiphenyl to the clam, Macoma balthica, Environ. Sci. Technol., 38(17), 4549-4556.   DOI
39 Menzie, C., Amos, B., Driscoll, S.K., Ghosh, U., and Gilmour, C., 2016, Evaluating the efficacy of a low-impact delivery system for in situ treatment of sediments contaminated with methylmercury and other hydrophobic chemicals, Exponent Alexandria United States.
40 Schwarzenbach, R.P. and Westall, J., 1981, Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies, Environ. Sci. Technol., 15(11), 1360-1367.   DOI
41 U.S. EPA, 2005, Contaminated sediment remediation guidance for hazardous waste sites, EPA-540-R-05-012, Washington, DC, USA.
42 Werner, D., Ghosh, U., and Luthy, R.G., 2006, Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon, Environ. Sci. Technol., 40(13), 4211-4218.   DOI
43 Brandli, R.C., Hartnik, T., Henriksen, T., and Cornelissen, G., 2008, Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil, Chemosphere, 73(11), 1805-1810.   DOI
44 Wikstrom, J., Bonaglia, S., Ramo, R., Renman, G., Walve, J., Hedberg, J., and Gunnarsson, J.S., 2021, Sediment remediation with new composite sorbent amendments to sequester phosphorus, organic contaminants, and metals, Environ. Sci. Technol., 55(17), 11937-11947.   DOI
45 Zimmerman, J.R., Ghosh, U., Millward, R.N., Bridges, T.S., and Luthy, R.G., 2004, Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: Physicochemical tests, Environ. Sci. Technol., 38(20), 5458-5464.   DOI
46 Zimmerman, J.R., Bricker, J.D., Jones, C., Dacunto, P.J., Street, R.L., and Luthy, R.G., 2008, The stability of marine sediments at a tidal basin in San Francisco Bay amended with activated carbon for sequestration of organic contaminants, Water Res., 42(15), 4133-4145.   DOI
47 U.S. EPA, 2013, Use of amendments for in situ remediation at Superfund sediment sites, EPA OSWER Directive 9200.2-128FS, Washington, DC, USA.
48 Bianco, F., Race, M., Papirio, S., Oleszczuk, P., and Esposito, G., 2021, The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments, Chemosphere, 263, 128274.   DOI
49 McLeod, P.B., van den Heuvel-Greve, M.J., Luoma, S.N., and Luthy, R.G., 2007, Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon, Environ. Toxicol. Chem., 26(5), 980-987.   DOI
50 Choi, Y., Cho, Y.M., Luthy, R.G., and Werner, D., 2016c, Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site-and compound-specific characteristics, J. Hazard. Mater., 301, 424-432.   DOI
51 Karanfil, T. and Kilduff, J.E., 1999, Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants, Environ. Sci. Technol., 33(18), 3217-3224.   DOI
52 Lamoureux, E.M. and Brownawell, B.J., 1999, Chemical and biological availability of sediment-sorbed hydrophobic organic contaminants, Environ. Toxicol. Chem., 18(8), 1733-1741.   DOI
53 Mustajarvi, L., Eek, E., Cornelissen, G., Eriksson-Wiklund, A. K., Undeman, E., and Sobek, A., 2017, In situ benthic flowthrough chambers to determine sediment-to-water fluxes of legacy hydrophobic organic contaminants, Environ. Pollut., 231, 854-862.   DOI
54 Janssen, E.M.L., Croteau, M.N., Luoma, S.N., and Luthy, R.G., 2010, Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete Neanthes arenaceodentata and response to sorbent amendment, Environ. Sci. Technol., 44(8), 2857-2863.   DOI
55 Janssen, E.M.L. and Beckingham, B.A., 2013, Biological responses to activated carbon amendments in sediment remediation, Environ. Sci. Technol., 47(14), 7595-7607.   DOI
56 Jonker, M.T.O., Hoenderboom, A.M., and Koelmans, A.A., 2004, Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls, Environ. Toxicol. Chem., 23(11), 2563-2570.   DOI
57 Jonker, M.T.O., Suijkerbuijk, M.P., Schmitt, H., and Sinnige, T.L., 2009, Ecotoxicological effects of activated carbon addition to sediments, Environ. Sci. Technol., 43(15), 5959-5966   DOI
58 Jonker, M.T.O. and Smedes, F., 2000, Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, the Netherlands, Environ. Sci. Technol., 34(9), 1620-1626.   DOI
59 Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments, Water. Res., 13(3), 241-248.   DOI
60 Kraaij, R., Mayer, P., Busser, F.J.M., van het Bolscher, M., Seinen, W., Tolls, J., and Belfroid, A.C., 2003, Measured pore-water concentrations make equilibrium partitioning work - A data analysis, Environ. Sci. Technol., 37(2), 268-274.   DOI
61 Kupryianchyk, D., Noori, A., Rakowska, M.I., Grotenhuis, J.T.C., and Koelmans, A.A., 2013, Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon, Environ. Sci. Technol., 47(10), 5092-5100.   DOI
62 Marchal, G., Smith, K.E., Rein, A., Winding, A., Trapp, S., and Karlson, U.G., 2013, Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost, Chemosphere, 90(6), 1767-1778.   DOI
63 Patmont, E., Jalalizadeh, M., Bokare, M., Needham, T., Vance, J., Greene, R., Cargil, J., and Ghosh, U., 2020, Full-Scale Application of Activated Carbon to Reduce Pollutant Bioavailability in a 5-Acre Lake, J. Environ. Eng., 146(5), 04020024.   DOI
64 Choi, Y., Thompson, J.M., Lin, D., Cho, Y.M., Ismail, N.S., Hsieh, C.H., and Luthy, R.G., 2016a, Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants, J. Hazard. Mater., 304, 352-359.   DOI