• 제목/요약/키워드: ABC transporters

검색결과 34건 처리시간 0.041초

ABC Transporters and Tailored Medicine

  • Lee, Ji-Hyun;Choi, Ji-Ha;Yi, Ji-Hyun;Kim, Kyung-Hwan;Lee, Min-Goo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Proceedings of The Convention
    • /
    • pp.95-99
    • /
    • 2006
  • PDF

ABC Transporters and Tailored Medicine

  • Lee, Ji-Hyun;Choi, Ji-Ha;Yi, Ji-Hyun;Kim, Kyung-Hwan;Lee, Min-Goo
    • 한국약용작물학회:학술대회논문집
    • /
    • 한국약용작물학회 2006년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.95-99
    • /
    • 2006
  • PDF

카드뮴이 해양 섬모충(Euplotes crassus)의 ABC Transporters와 GST 유전자 발현에 미치는 영향에 관한 연구 (Effect of Cadmium on the Expression of ABC Transporters and Glutathione S-transferase in the Marine Ciliate Euplotes crassus)

  • 김호균;김세훈;김지수;이영미
    • 한국해양생명과학회지
    • /
    • 제1권2호
    • /
    • pp.79-87
    • /
    • 2016
  • 카드뮴과 같은 중금속은 독성이 높아 수서 생물과 인간에게 해로운 영향을 미친다고 알려져 있다. 본 연구에서는 해양 섬모충 Euplotes crassus에서 카드뮴이 해독 기전에 관여하는 ABC transporters (ABCs)와 glutathione S-transferase (GST)의 유전자 발현에 미치는 영향을 조사하였다. 총 7개의 ABCs 유전자와 1개의 GST 유전자 일부를 클로닝하여 유전자 분석을 실시하였고, 카드뮴(0.1~1 mg/l) 노출에 따른 이들 유전자의 발현 양상을 quantitative real time RT-PCR (qRT-PCR)을 이용하여 분석하였다. 염기서열 분석과 계통 분석 결과 이들 ABCs 유전자가 ABC transporter의 특징을 가지며, ABC-B/C family에 속하는 것을 확인하였고, GST 유전자는 theta isoform과 유사한 것으로 나타났다. 카드뮴에 8시간 노출시킨 결과 ABC transporter 유전자의 경우 ABCB21 유전자를 제외하고는 대부분 농도 의존적으로 유전자 발현이 유의하게 증가하였다. GST 유전자는 0.5 mg/l에서 가장 높은 유전자 발현 양상을 보였으며, 1 mg/l에서는 발현량이 대조군 수준으로 감소되었다. 본 연구 결과는 E. crassus의 ABC transporter와 GST 유전자가 카드뮴에 의해 유도되는 독성에 대한 방어 기전에 참여하는 것을 의미한다.

Targeting Multidrug Resistance with Small Molecules for Cancer Therapy

  • Xia, Yan;Lee, Kyeong
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.375-385
    • /
    • 2010
  • Conventional cancer chemotherapy is seriously limited by tumor cells exhibiting multidrug resistance (MDR), which is caused by changes in the levels or activity of membrane transporters that mediate energy-dependent drug efflux and of proteins that affect drug metabolism and/or drug action. Cancer scientists and oncologists have worked together for some time to understand anticancer drug resistance and develop pharmacological strategies to overcome such resistance. Much focus has been on the reversal of the MDR phenotype by inhibition of ATP-binding cassette (ABC) drug transporters. ABC transporters are a family of transporter proteins that mediate drug resistance and low drug bioavailability by pumping various drugs out of cells at the expense of ATP hydrolysis. Many inhibitors of MDR transporters have been identified, and though some are currently undergoing clinical trials, none are in clinical use. Herein, we briefly review the status of MDR in human cancer, explore the pathways of MDR in chemotherapy, and outline recent advances in the design and development of MDR modulators.

벼도열병균 게놈서열로부터 ABC transporter 유전자군의 예측 및 특성 분석 (Prediction and Annotation of ABC Transporter Genes from Magnaporthe oryzae Genome Sequence)

  • 김용남;김진수;김수영;김정환;이종환;최우봉
    • 생명과학회지
    • /
    • 제20권2호
    • /
    • pp.176-182
    • /
    • 2010
  • 벼의 생산에 있어 가장 큰 문제 요인 중 하나인 벼도열병의 발생 원인균인 벼도열병균은 다양한 기작에 의해 방제 약제에 대한 내성을 가지는 것으로 알려져 있다. 막 운반단백질인 ABC transporter의 경우 환경으로부터의 다양한 독성 물질들을 배출하는 것으로 알려져 있다. 이미 알려진 벼도열병균의 게놈 서열로부터 생물정보학적 분석을 통하여 ABC transporter 단백질의 도메인 특성을 보이는 33개의 유전자군 서열을 예측하였다. 이중 3개의 경우는 이미 알려진 유전자로 판명되었다. Southern Hybridization 분석에 적용한 20개의 유전자들이 모두 게놈상에 단일 copy로 존재함을 확인하였다. 새로 예측된 30개의 유전자중 11개는 RT-PCR을 통하여 전사단계에서의 유전자 발현이 확인되었다.

Functional Implications of Transporters Under Nitrosative Stress Conditions

  • Yu, Kyung-Ha;Maeng, Han-Joo;Chung, Suk-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권3호
    • /
    • pp.139-153
    • /
    • 2010
  • Nitrosative stress is defined as pathophysiological conditions that are related to covalent modifications of proteins by nitration/nitrosylation by forms of nitrogen oxide ($NO_x$), leading to DNA damage, ultimately, cell death. This type of stress condition appears to be associated with a number of disease states, including diabetes, inflammation and neurodegenerative diseases. Since these pathological conditions are frequently chronic in nature and, thus, require long-term treatment, changes in pharmacokinetics are likely to affect the therapy. Transporters are membrane proteins that facilitate the movement of substrates, including drugs, across plasma membranes of epithelial / endothelial cells. Since it is now increasingly evident that transporters are pharmacokinetically significant, functional alteration of transporters by this stress condition may have therapeutic relevance. In this review, experimental techniques that are used to study both in vivo and in vitro nitrosative stress are summarized and discussed, along with available literature information on the functional implication of transporters under conditions of nitrosative stress conditions. In the literature, both functional induction and impa irment were apparently present for both drug transporter families [i.e., ATP-binding cassette (ABC) and solute carrier families (SLC)]. Furthermore, a change in the function of a certain transporter appears to have temporal dependency by impairment in the early phase of nitrosative stress and induction thereafter, suggesting that the role of nitrosative stress is complex in terms of functional implications of the transporters. Although the underlying mechanisms for these alterations are not fully understood, protein nitration/nitrosylation appears to be involved in the functional impairment whereas transcript factor(s) activated by nitrosative stress may play a role, at least in part, in functional induction. Interestingly, functional induction under conditions of nitrosative stress has not been observed for SLC transporters while such impairment has been documented for both ABC and SLC transporters. Further investigations appear to be necessary to fully delineate the underlying reasons for these differences on the impact and importance of nitrosative stress conditions.

Isolation and characterization of BrMDR1 a novel MDR-type ATP-binding cassette (ABC) transporter in Brassica rapa L.

  • Lee, Sun-Yong;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • 한국자원식물학회지
    • /
    • 제22권3호
    • /
    • pp.273-280
    • /
    • 2009
  • A cDNA clone encoding a MDR-like ABC transporter protein was isolated from Brassica rapa seedlings, through rapid amplification of cDNA ends (RACE). This gene (named as Brmdr 1; GenBank accession no.: DQ296184 ) had a total length of 4222 bp with an open reading frame of 3900 bp, and encoded a predicted polypeptide of 1300 amino acids with a molecular weight of 143.1 kDa. The BrMDR1 protein shared 71.0, 62.5, 60.0 and 58.2% identity with other MDR proteins isolated from Arabidopsis thaliana (AAN28720), Coptis japonica (CjMDR), Gossypium hirsutum (GhMDR) and Triticum aestivum (TaMDR) at amino acid level, respectively. Southern blot analysis showed that Brmdr1 was a low-copy gene. Expression pattern analysis revealed that Brmdr1 constitutively expressed in the root, stem petals and stamens, but with lower expression in leaves and open flowers. The domains analysis showed that BrMDR1 protein possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranging in "TMD1-NBD1-TMD2-NBD2" direction, which is consistent with other MDR transporters. Within NBDs three characteristic motifs common to all ABC transporters, "Walker A", "Walker B" and C motif, were found. These results indicate that BrMDR1 is a MDR-like ABC transporter protein that may be involved in the transport and accumulation of secondary metabolites.

A Novel ABC Transporter Gene ABC2 Involved in Multidrug Susceptibility but not Pathogenicity in Rice Blast Fungus, Magnaporthe grisea

  • Lee, Young-Jin;Kyosuke Yamamoto;Hiroshi Hamamoto;Ryoji Nakaune;Tadaaki Hibi
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.21-22
    • /
    • 2003
  • Fungicide treatment is the most important method for the control of plant diseases caused by phytopathogenic fungi. But fungicide resistant strains have appeared in many phytopathogenic fungi. Until now, molecular mechanisms of fungicide resistance such as mutation of target protein, overproduction of target enzyme and detoxification of fungicide have been designated. Recently, it was demonstrated that active efflux of fungicides mediated by ATP-binding cassette (ABC) transporters also contributes to fungicide resistance in several filamentous fungi, such as Aspergillus nidulans, Penicillium digitatum and Botrytis cinerea.(중략)

  • PDF

Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi

  • Sang, Hyunkyu;Lee, Hyang Burm
    • 식물병연구
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2020
  • The succinate dehydrogenase inhibitor (SDHI) is a class of fungicides, which is widely and rapidly used to manage fungal pathogens in the agriculture field. Currently, fungicide resistance to SDHIs has been developed in many different plant pathogenic fungi, causing diseases on crops, fruits, vegetables, and turf. Understanding the molecular mechanisms of fungicide resistance is important for effective prevention and resistance management strategies. Two different mechanisms have currently been known in SDHI resistance. The SDHI target genes, SdhB, SdhC, and SdhD, mutation(s) confer resistance to SDHIs. In addition, overexpression of ABC transporters is involved in reduced sensitivity to SDHI fungicides. In this review, the current status of SDHI resistance mechanisms in phytopathogenic fungi is discussed.