DOI QR코드

DOI QR Code

Targeting Multidrug Resistance with Small Molecules for Cancer Therapy

  • Xia, Yan (Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul) ;
  • Lee, Kyeong (Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul)
  • Received : 2010.07.12
  • Accepted : 2010.10.03
  • Published : 2010.10.31

Abstract

Conventional cancer chemotherapy is seriously limited by tumor cells exhibiting multidrug resistance (MDR), which is caused by changes in the levels or activity of membrane transporters that mediate energy-dependent drug efflux and of proteins that affect drug metabolism and/or drug action. Cancer scientists and oncologists have worked together for some time to understand anticancer drug resistance and develop pharmacological strategies to overcome such resistance. Much focus has been on the reversal of the MDR phenotype by inhibition of ATP-binding cassette (ABC) drug transporters. ABC transporters are a family of transporter proteins that mediate drug resistance and low drug bioavailability by pumping various drugs out of cells at the expense of ATP hydrolysis. Many inhibitors of MDR transporters have been identified, and though some are currently undergoing clinical trials, none are in clinical use. Herein, we briefly review the status of MDR in human cancer, explore the pathways of MDR in chemotherapy, and outline recent advances in the design and development of MDR modulators.

Keywords

References

  1. Abolhoda, A., Wilson, A. E., Ross, H., Denenberg, R. V., Burt, M. and Scotto, K. W. (1999). Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin. Cancer Res. 5, 3352-3356.
  2. Almquist, K. C., Loe, D. W., Hipfner, D. R., Mackie, J. E., Cole, S. P. and Deeley, R. G. (1995). Characterization of the M 190 000 multidrug resistance protein (MRP) in drug selected and transfected human tumor cell. Cancer Res. 55, 102-110.
  3. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I. and Gottesman, M. M. (1999). Biochemical, cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 34, 361-398.
  4. Anderle, P., Huang, Y. and Sadee, W. (2004). Intestinal membrane transport of drugs and nutrients: Genomics of membrane transporters using expression microarrays. Eur. J. Pharm. Sci. 21, 17-24. https://doi.org/10.1016/S0928-0987(03)00169-6
  5. Beck, J., Gekeler, V., Handgretinger, R. and Niethammer, D. (1994). PCR gene expression analysis of multidrug resistance associated genes in primary and relapsed state leukemias: comparison of mdrl, mrp, topoisomerase IIa, topoisomerase IIb and cyclin A mRNA levels. Proc. Am. Assoc. Cancer Res. 35, 337.
  6. Benet, L. Z. and Cummins, C. L. (2001). The drug efflux- metabolism alliance: biochemical aspects. Adv. Drug Deliv. Rev. 50(Suppl 1), S3-S11. https://doi.org/10.1016/S0169-409X(01)00178-8
  7. Borst, P., Evers, R., Kool, M. and Wijnholds, J. (2000). A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92, 1295-302. https://doi.org/10.1093/jnci/92.16.1295
  8. Borst, P., Kool, M. and Evers, R. (1997). Do cMOAT (MRP2), other MRP homologues, and LRP play a role in MDR. Cancer Biol. 8, 205-213. https://doi.org/10.1006/scbi.1997.0071
  9. Broxterman, H. J., Kuiper, C. M., Schuurhuis, G. J., Ossen koppele, G. J., Feller, N., Scheper, R. J., Lankelma, J. and Pinedo, H. M. (1994). Analysis of P-glycoprotein (P-gp) and non-P-gp multidrug resistance in acute myeloid leukemia. Proc. Am. Assoc. Cancer Res. 35, 348.
  10. Chearwae, W., Wu, C. P., Chu, H. Y., Lee, T. R., Ambudkar, S. V. and Limtrakul, P. (2006). Curcuminoids purified from tumeric powder modulate the function of human multidrug resistance protein 1 (ABCC1). Cancer Chemother. Pharmacol. 57, 376-388. https://doi.org/10.1007/s00280-005-0052-1
  11. Choi, C. H. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int. 5, 30. https://doi.org/10.1186/1475-2867-5-30
  12. Coburger, C., Wollmann, J., Baumert, C., Krug, M., Molna´r, J., Lage, H. and Hilgeroth, A. (2008). Novel insight in structureactivity relationship and bioanalysis of P-Glycoprotein targeting highly potent tetrakishydroxymethyl substituted 3,9- Diazatetraasteranes. J. Med. Chem. 51, 5871-5874. https://doi.org/10.1021/jm800480y
  13. Colabufo, N. A., Berardi, F., Cantore, M., Perrone, M. G., Contino, M., Inglese, C., Niso, M., Perrone, R., Azzariti, A., Simone, G. M., Porcelli, L. and Paradiso, A. (2008a). Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg. Med. Chem. 16, 362-373.
  14. Colabufo, N. A., Berardi, F., Perrone, R., Rapposelli, S., Digiacomo, M., Vanni, M. and Balsamo, A. (2008b). Synthesis and biological evaluation of (Hetero) arylmethyloxy- and arylmethylamine- phenyl derivatives as potent P-glycoprotein modulating agents. J. Med. Chem. 51, 1415-1422. https://doi.org/10.1021/jm701267q
  15. Colabufo, N. A., Berardi, F., Perrone, R., Rapposelli, S., Digiacomo, M., Vanni, M. and Balsamo, A. (2008c). 2-[(3-Methoxyphenylethyl) phenoxy]-based ABCB1 Inhibitors: effect of different basic side-chains on their biological properties. J. Med. Chem. 51, 7602-7613. https://doi.org/10.1021/jm800928j
  16. Dantzig, A. H., Shepard, R. L., Law, K. L., Tabas, L., Pratt, S., Gillespie, J. S., Binkley, S. N., Kuhfeld, M. T., Starling, J. J. and Wrighton, S. A. (1999). Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J. Pharmacol. Exp. Ther. 290, 854-862.
  17. Das, U., Molnár, J., Bará th, Z., Bata, Z. and Dimmock, J. R. (2008). 1-[4-(2-Aminoethoxy)phenylcarbonyl]-3,5-bis (benzylidene)- 4-oxopiperidines: a novel series of highly potent revertants of P-glycoprotein associated multidrug resistance. Bioorg. Med. Chem. Lett. 18, 3484-3487. https://doi.org/10.1016/j.bmcl.2008.05.034
  18. Dean, M., Rzhetsky, A. and Allikmets, R. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156-1166. https://doi.org/10.1101/gr.GR-1649R
  19. Demant, E. J., Sehested, M. and Jensen, P. B. (1990). A model for computer simulation of P-glycoprotein and transmembrane delta pH-mediated anthracycline transport in multidrug resistant tumor cells. Biochim. Biophys. Acta. 1055, 117-125. https://doi.org/10.1016/0167-4889(90)90111-P
  20. Efferth, T. (2001). The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr. Mol. Med. 1, 45-65. https://doi.org/10.2174/1566524013364194
  21. Fan, D., Beltran, P. J. and O’Brien, C. A. (1994). Reversal of multidrug resistance. In Reversal of Multidrug Resistance in Cancer (J. A. Kellen, Ed.), pp. 93-124. CRC Press, Boca Raton, FL.
  22. Fong, W. F., Shen, X. L., Globisch, C., Wiese, M., Chen, G. Y., Zhu, G. Y., Yu, Z. L., Tse, A. K. W. and Hue, Y. J. (2008). Methoxylation of 3’,4’-aromatic side chains improves P-glycoprotein inhibitory and multidrug resistance reversal activities of 7,8-pyranocoumarin against cancer cells. Bioorg. Med. Chem. 16, 3694-3703. https://doi.org/10.1016/j.bmc.2008.02.029
  23. Ford, J. M. and Hait, W. N. (1990). Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42, 155-199.
  24. Garcia, M., Jemal, A., Ward, E. M., Center, M. M., Hao, Y., Siegel, R. L. and Thun, M. J. (2007). Global Cancer Facts and Figures 2007. American Cancer Society, Atlanta, GA.
  25. Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615-627. https://doi.org/10.1146/annurev.med.53.082901.103929
  26. Gottesman, M. M., Fojo, T. and Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer 2, 48-58. https://doi.org/10.1038/nrc706
  27. Gottesman, M. M. and Pastan, I. (1996). Drug resistance: alterations in drug uptake or extrusion. In Encyclopedia of Cancer (J. R. Bertino, Ed.) pp. 549-559. Academic, San Diego, CA.
  28. Gruber, A., Bjorkholm, M., Brinch, L., Evensen, S., Gustavsson, B., Hedenus, M., Juliusson, G., Löfvenberg, E., Nesthus, I., Simonsson, B., Sjo, M., Stenke, L., Tangen, J. M., Tidefelt, U., Udén, A. M., Paul, C. and Liliemark, J. (2003). A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk. Res. 27, 323-328. https://doi.org/10.1016/S0145-2126(02)00181-9
  29. Hacker, H. G., de la Haye, A., Sterz, K., Schnakenburg, G., Wiese, M. and Gutschow, M. (2009a). Analogs of a 4-aminothieno[2,3-d]pyrimidine lead (QB13) as modulators of P-glycoprotein substrate specificity. Bioorg. Med. Chem. Lett. 19, 6102-6105. https://doi.org/10.1016/j.bmcl.2009.09.023
  30. Hacker, H. G., Leyers, S., Wiendlocha, J., Gutschow, M. and Wiese, M. (2009b). Aromatic 2-(Thio)ureidocarboxylic acids as a new family of modulators of multidrug resistanceassociated protein 1: synthesis, biological evaluation, and structure-activity relationships. J. Med. Chem. 52, 4586- 4595. https://doi.org/10.1021/jm900688v
  31. Hao, X. Y., Widersten, M., Ridderstrom, M., Hellman, U. and Mannervik, B. (1994). Covariation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme. Biochem. J. 297, 59-67. https://doi.org/10.1042/bj2970059
  32. Henrich, C. J., Bokesch, H. R., Dean, M., Bates, S. E., Robey, R. W., Goncharova, E. I., Wilson, J. A. and McMahon, J. B. (2006). A high-throughput cell-based assay for inhibitors of ABCG2 activity. J. Biomol. Screen 11, 176-183. https://doi.org/10.1177/1087057105284576
  33. Jin, J., Shahi, S., Kang, H. K., Van Veen, H. W. and Fan, T. P. (2006). Metabolism of ginsenosides as novel BCRP inhibitors. Biochem. Biophys. Res. Commun. 345, 1308-1314. https://doi.org/10.1016/j.bbrc.2006.04.152
  34. Jin, J., Wang, F. P., Wei, H. and Liu, G. (2005). Reversal of multidrug resistance of cancer through inhibition of Pglycoprotein by 5-bromotetrandrine. Cancer Chemother. Pharmacol. 55, 179-188. https://doi.org/10.1007/s00280-004-0868-0
  35. Katayama, K., Masuyama, K., Yoshioka, S., Hasegawa, H., Mitsuhashi, J. and Sugimoto, Y. (2007). Flavonoids inhibit breast cancer resistance protein-mediated drug resistance: transporter specificity and structure-activity relationship. Cancer Chemother. Pharmacol. 60, 789-797. https://doi.org/10.1007/s00280-007-0426-7
  36. Kellen, J. A. (2003). The reversal of multidrug resistance: an update. J. Exp. Ther. Oncol. 3, 5-13. https://doi.org/10.1046/j.1359-4117.2003.01067.x
  37. Kim, D. H., Park, J. Y., Sohn, S. K., Lee, N. Y., Baek, J. H., Jeon, S. B., Kim, J. G., Suh, J. S., Do, Y. R. and Lee, K. B. (2006). Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int. J. Cancer 118, 2195-2201. https://doi.org/10.1002/ijc.21666
  38. Kim, R. B., Wandel, C., Leake, B., Cvetkovic, M., Fromm, M. F., Dempsey, P. J., Roden, M. M., Belas, F., Chaudhary, A. K., Roden, D. M., Wood, A. J. and Wilkinson, G. R. (1999). Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm. Res. 16, 408-414. https://doi.org/10.1023/A:1018877803319
  39. Krishna, R. and Mayer, L. D. (2000). Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharm. Sci. 11, 265-283. https://doi.org/10.1016/S0928-0987(00)00114-7
  40. Krug, M., Voigt, B., Baumert, C., Lupken, R., Molnar, J. and Hilgeroth, A. (2010). First biological evaluation of developed 3-benzyloxyfluorenes as novel class of MDR modulators. Eur. J. Med. Chem. 45, 2683-2688 https://doi.org/10.1016/j.ejmech.2010.02.024
  41. Kuhnle, M., Egger, M., Muller, C., Mahringer, A., Bernhardt, G., Fricker,G., Konig, B. and Buschauer, A. (2009). Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the P-Glycoprotein (ABCB1) modulator tariquidar. J. Med. Chem. 52, 1190-1197. https://doi.org/10.1021/jm8013822
  42. Leonard, G. D., Fojo, T. and Bates, S. E. (2003). The role of ABC transporters in clinical practice. Oncologist 8, 411-424. https://doi.org/10.1634/theoncologist.8-5-411
  43. Li, Y., Zhang, H. B. and Huang, W. L. (2008). Design and synthesis of tetrahydroisoquinoline derivatives as potential multidrug resistance reversal agents in cancer. Bioorg. Med. Chem. Lett. 18, 3652-3655. https://doi.org/10.1016/j.bmcl.2008.04.082
  44. Limtrakul, P. (2007). Curcumin as chemosensitizer. Adv. Exp. Med. Biol. 595, 269-300. https://doi.org/10.1007/978-0-387-46401-5_12
  45. Limtrakul, P., Chearwae, W., Shukla, S., Phisalphong, C. and Ambudkar, S. V. (2007a). Modulation of function of three ABC transporters, P-glycoprotein (ABCB1), mitoxanthrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell Biochem. 296, 85-95. https://doi.org/10.1007/s11010-006-9302-8
  46. Limtrakul, P., Siwanon, S., Yodkeeree, S. and Duangrat, C. (2007b). Effect of Stemona curtisii root extract on P-glycoprotein and MRP-1 function in multidrug-resistant cancer cells. Phytomedicine 14, 381-389. https://doi.org/10.1016/j.phymed.2007.03.006
  47. Liscovitch, M. and Lavie, Y. (2002). Cancer multidrug resistance: a review of recent drug discovery research. Drugs 5, 349-355.
  48. Liu, D. F., Li, Y. P., Ou, T. M., Huang, S. L., Gu, L. Q., Huang, M. and Huang, Z. S. (2009). Synthesis and antimultidrug resistance evaluation of icariin and its derivatives. Bioorg. Med. Chem. Lett. 19, 4237-4240. https://doi.org/10.1016/j.bmcl.2009.05.103
  49. Longley, D. B. and Johnston, P. G. (2005). Molecular mechanisms of drug resistance. J. Pathol. 205, 275-292. https://doi.org/10.1002/path.1706
  50. Martelli, C., Coronnello, M., Dei, S., Manetti, D., Orlandi, F., Scapecchi, S., Romanelli, M. N., Salerno, M., Mini, E. and Teodori, E. (2010). Structure-activity relationships studies in a series of N,N-Bis(alkanol)amine aryl esters as P-Glycoprotein (Pgp) dependent multidrug resistance (MDR) inhibitors. J. Med. Chem. 53, 1755-1762. https://doi.org/10.1021/jm9016174
  51. Min, K. H., Xia, Y., Kim, E. K., Jin, Y. L., Kaur, N., Kim, E. S., Kim, D. K., Jung, H. Y., Choi, Y., Park, M. K., Min, Y. K., Lee, K. and Lee, K. (2009). A novel class of highly potent multidrug resistance reversal agents: Disubstituted adamantyl derivatives. Bioorg. Med. Chem. Lett. 19, 5376-5379. https://doi.org/10.1016/j.bmcl.2009.07.127
  52. Nakamura, M., Abe, Y., Katoh, Y., Oshika, Y., Hatanaka, H., Tsuchida, T., Yamazaki, H., Kijima, H., Inoue, H. and Ueyama, Y. (2000). A case of pulmonary adencarcinoma with overexpression of multidrug resistance associated protein and p53 aberration. Anticancer Res. 20, 1921-1925.
  53. Newman, M. J., Rodarte, J. C., Benbatoul, K. D., Romano, S. J., Zhang, C., Krane, S., Moran, E. J., Uyeda, R. T., Dixon, R., Guns, E. S. and Mayer, L. D. (2000). Discovery and characterization of OC144-093, a novel inhibitor of P-glycoproteinmediated multidrug resistance. Cancer Res. 60, 2964-2972.
  54. Pluen, A., Boucher, Y., Ramanujan, S., McKee, T. D., Gohongi, T., Tomaso, E., Brown, E. B., Izumi, Y., Campbell, R. B., Berk, D. A. and Jain, R. K. (2001). Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. 98, 4628-4633. https://doi.org/10.1073/pnas.081626898
  55. Polgar, O. and Bates, S. E. (2004). ABC transporters in the balance: is there a role in multidrug resistance? Biochem. Soc. Trans. 33, 241-245. https://doi.org/10.1042/BST0330241
  56. Raad, I., Terreux, R., Richomme, P., Matera, E. L., Dumontet, C., Raynaud, J. and Guilet, D. (2006). Structure- activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein. Bioorg. Med. Chem. 14, 6979-6987. https://doi.org/10.1016/j.bmc.2006.06.026
  57. Romiti, N., Pellati, F., Nieri, P., Benvenuti, S., Adinolfi, B. and Chieli, E. (2008). P-glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell lines. Planta Med. 74, 264-266. https://doi.org/10.1055/s-2008-1034308
  58. Rowinsky, E. K., Smith, L., Wang, Y. M., Chaturvedi, P., Villalona, M., Campbell, E., Aylesworth, C., Eckhardt, S. G., Hammond, L., Kraynak, M., Drengler, R., Stephenson, J. J., Harding, M. W. and Von Hoff, D. D. (1998). Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J. Clin. Oncol. 16, 2964-2976. https://doi.org/10.1200/JCO.1998.16.9.2964
  59. Rubio, G. J., Pinedo, H. M., Gazdar, A. F., Van Ark-Otte, J. and Giaccone, G. (1994). MRP gene assessment in human cancer, normal lung, and lung cancer cell lines. Proc. Am. Assoc. Cancer Res. 35, 206.
  60. Shukla, S., Wu, C. P., and Ambudkar, S. V. (2008). Development of inhibitors of ATP-binding cassette drug transporters - present status and challenges. Expert Opin. Drug Metab. Toxicol. 4, 205-223. https://doi.org/10.1517/17425255.4.2.205
  61. Skupien, K., Kostrzewa-Nowak, D., Oszmianski, J. and Tarasiuk, J. (2008). In vitro antileukemia activity of extracts from chokeberry (Aronia melanocarpa [Michx] Elliot) and mulberry (Morus alba L.) leaves against sensitive and multidrug resistant HL60 cells. Phytother. Res. 22, 689-694. https://doi.org/10.1002/ptr.2411
  62. Takahashi, K., Kimura, Y., Nagata, K., Yamamoto, A., Matsuo, M. and Ueda, K. (2005). ABC proteins: key molecules for lipid homeostasis. Med. Mol. Morphol. 38, 2-12. https://doi.org/10.1007/s00795-004-0278-8
  63. Theis, J. G., Chan, H. S., Greenberg, M. L., Malkin, D., Karaskov, V., Moncica, I., Koren, G. and Doyle, J. (2000). Assessment of systemic toxicity in children receiving chemotherapy with cyclosporine for sarcoma. Med. Pediatr. Oncol. 34, 242-249. https://doi.org/10.1002/(SICI)1096-911X(200004)34:4<242::AID-MPO2>3.0.CO;2-U
  64. Thomas, H. and Coley, H. M. (2005). Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10, 159-165.
  65. Toppmeyer, D., Seidman, A. D., Pollak, M., Russell, C., Tkaczuk, K., Verma, S., Overmoyer, B., Garg, V., Ette, E., Harding, M. W. and Demetri, G. D. (2002). Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin. Cancer Res. 8, 670-678.
  66. Van Zanden, J. J., De Mul, A., Wortelboer, H. M., Usta, M., van Bladeren, P. J., Ivonne, M. C., Rietjens, M., Nicole, H. and Cnubben, P. (2005). Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin. Biochem. Pharmacol. 69, 1657-1665. https://doi.org/10.1016/j.bcp.2005.03.001
  67. Viale, M., Cordazzo, C., Cosimelli, B., de Totero, D., Castagnola, P., Aiello, C., Severi, E., Petrillo, G., Cianfriglia, M. and Spinelli, D. (2009). Inhibition of MDR1 activity in vitro by a novel class of diltiazem analogues: toward new candidates. J. Med. Chem. 52, 259-266. https://doi.org/10.1021/jm801195k
  68. Wada, M. (2006). Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response. Cancer Letter 234, 40-50. https://doi.org/10.1016/j.canlet.2005.06.050
  69. Weiss, J., Sauer, A., Frank, A. and Unger, M. (2005). Extracts and kavalactones of Piper methysticum G. Forst (kava-kava) inhibit P-glycoprotein in vitro. Drug Metab. Dispos. 33, 1580-1583. https://doi.org/10.1124/dmd.105.005892
  70. Wu, C. P., Calcagno, A. M., Hladky, S. B., Ambudkar, S. V. and Barrand, M. A. (2005). Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 272, 4725-4740. https://doi.org/10.1111/j.1742-4658.2005.04888.x
  71. Xia, Y., Min, K. H. and Lee, K. (2009). Synthesis and Biological Evaluation of Decursin, Prantschimgin and Their Derivatives. Bull. Korean Chem. Soc. 30, 43-48. https://doi.org/10.5012/bkcs.2009.30.1.043
  72. Yu, S. T., Chen, T. M., Tseng, S. Y. and Chen, Y. H. (2007). Tryotanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem. Biophys. Res. Commun. 358, 79-84. https://doi.org/10.1016/j.bbrc.2007.04.107
  73. Zaman, G. J. R., Versantvoort, C. H. M., Smit, J. J. M., Eijdems, E. W. H. M., De Haas, M., Smith, A. J., Broxterman, H. J., Mulder, N. H., De Vries, E. G. E., Baas, F. and Borst, P. (1993). Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res. 53, 1747-1750.

Cited by

  1. Synthesis and Bioactivity of Novel Adamantyl Derivatives as Potent MDR Reversal Agents vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4444
  2. Indirect modulation of sensitivity to 5-fluorouracil by microRNA-96 in human colorectal cancer cells vol.38, pp.2, 2015, https://doi.org/10.1007/s12272-014-0528-9
  3. The distribution and retention of paclitaxel and doxorubicin in multicellular layer cultures vol.27, pp.4, 2012, https://doi.org/10.3892/or.2012.1650
  4. Structure–Activity Relationship Study of Permethyl Ningalin B Analogues as P-Glycoprotein Chemosensitizers vol.56, pp.22, 2013, https://doi.org/10.1021/jm400930e
  5. Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102171
  6. Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.135