• Title/Summary/Keyword: AB급

Search Result 16, Processing Time 0.022 seconds

Design and Realization UHF Power Amplifier for Air Traffic Control (항공교통관제용 UHF대역 전력 증폭기 설계 및 구현)

  • Kang, Suk-Youb;Song, Byoung-Jin;Park, Wook-Ki;Go, Min-Ho;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the 25W power amplifier for UHF band radio transceiver has been designed and realized. The power amplifier was composed of drive, power amplifier and control stages. Feedback topology and coaxial line baluns were used for wide band operation. The VDMOS, which has reliable performance for linearity and efficiency, was used for power device and designed to operate as push-pull amplification at Class AB Bias. The power amplifier designed in such a way was found to show stable AM modulation performance when voice signal was detected at the gate stage, with being designed and realized to meet output specifications of commercial air traffic control transmitter.

  • PDF

Design of High Efficiency Doherty Power Amplifier Using Adaptive Bias Technique for Wibro Applications (적응형 바이어스 기법을 이용한 와이브로용 고효율 도허티 전력증폭기 설계)

  • Oh, Chung-Gyun;Choi, Jae-Hong;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.164-169
    • /
    • 2005
  • In this paper, the high efficiency Doherty power amplifier using adaptive bias technique has been designed and realized for 2.3GHz Wibro applications. The RF performances of the Doherty power amplifier using adaptive bias technique have been compared with those of a class AB amplifier alone, and conventional Doherty amplifier. The Maximum PAE of designed Doherty power amplifier with adaptive bias technique has been 36.6% at 34.0dBm output power. The proposed Doherty power amplifier showed an improvement 1dB at output power and 7.6% PAE than a class AB amplifier alone.

  • PDF

Design of Low-Power 3rd-order Delta-Sigma Modulator (저전력 3차 델타-시그마 모듈레이터 설계)

  • In, Byoung Wha;Im, Saemin;Park, Sang-Gyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.43-51
    • /
    • 2013
  • This paper presents a design and implementation of a low power switched-capacitor 3rd-order delta-sigma modulator for a digital hearing-aid application. The power consumption is reduced by minimizing the output swing of integrators through optimizing the coefficients of modulator architecture and using class-AB output operational amplifiers. The modulator was implemented in a 130nm CMOS technology, and measured to have 79dB of SNR(Signal-to-Noise Ratio) in the signal bandwidth between 100Hz and 10kHz with an oversampling ratio of 160. The power consumption was $60{\mu}W$ from 1.2V power supply and the modulator core occupied $0.53mm{\times}0.53mm$.

A Design of Low-Power Wideband Bipolar Current Conveyor (CCII) and Its Application to Universal Instrumentation Amplifiers (저전력 광대역 바이폴라 전류 콘베이어(CCII)와 이를 이용한 유니버셜 계측 증폭기의 설계)

    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.143-152
    • /
    • 2004
  • A novel low-power wideband bipolar second-generation current conveyors(CCIIs) and its application to universal instrumentation amplifier(UIA) were proposed. The CCII for accuracy voltage or current transfer characteristics and low current input impedance adopted adaptive current bias circuit into conventional class Ab CCII. The UIA consists of only two CCIIs and four resistors. Three instrumentation function of the UIA can be realized by selection of input signals and resistors. The simulation results show that the CCII has input impedance of 2.0$\Omega$ and the voltage gain of 60㏈ for frequency range from 0 to 50KHz when used as a voltage amplifier. The CCII has also good characteristics of current follower for current range from -100㎃ to +100㎃. The simulation results show that the UIA has three instrumentation amplifier functions without resistor matching. The UIA has the voltage gain of 40㏈ for frequency range from 0 to 100KHz when used as a fully-differential instrumentation amplifier. The power dissipations of the CCII and the UIA are 0.75㎽ and 1.5㎽ at supply voltage of $\pm$2.5V, respectively.

A Study on Improving Efficiency of Power Amplifier using Doherty Theory for Wireless Network and Repeater (도허티 이론을 이용한 무선 네트워크 및 중계기용 전력증폭기의 효율 향상에 관한 연구)

  • Jeon Joong Sung;Choi Dong Muk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.422-427
    • /
    • 2005
  • In this paper, Doherty amplifier is designed by the need of improving the linearity and efficiency of wireless network and repeater for WCDMA. It is designed to maintain the high linearity and efficiency at the low efficiency period of the power amplifier after analyzing Doherty technique using the active load-pull in condition of the high efficiency power amplifier implementation according to the variation of input power. CW 1-tone experimental results at the WCDMA frequency 2.11$\~$2.17 CHz shows that Doherty amplifier, which achieves pore. add efficiency(PAE) 50$\%$ at 6dB back off the point from maximum output power 52.3dBm, obtains higher efficiency of 13.3$\%$ than class AB. finding optimum bias point after adjusted gate voltage, Doherty amplifier shows that IMD3 improves 4dB.

Design of a Novel Instrumentation Amplifier using Current-conveyor(CCII) (전류-컨베이어(CCII)를 사용한 새로운 계측 증폭기 설계)

  • CHA, Hyeong-Woo;Jeong, Tae-Yun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.80-87
    • /
    • 2013
  • A novel instrumentation amplifier(IA) using positive polarity current-conveyor(CCII+) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of two CCII+, three resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into two CCII+ used voltage and current follower converts into same currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the CCII+ and used commercial op-amp LF356. Simulation results show that voltage follower used CCII+ has offset voltage of 0.21mV at linear range of ${\pm}$4V. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the gain of 60dB was 400kHz. The IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 130mW at supply voltage of ${\pm}$5V.