• 제목/요약/키워드: A1

검색결과 416,177건 처리시간 0.198초

Effect of implant diameter and cantilever length on the marginal bone height changes and stability of implants supporting screw retained prostheses: A randomized double blinded control trial

  • Heba Ezzeldin Khorshid;Noha Ossama Issa;Amr Mohamed Ekram
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권3호
    • /
    • pp.101-113
    • /
    • 2023
  • PURPOSE. This randomized controlled trial aimed to evaluate the effect of implants' two different diameters and cantilever lengths on the marginal bone loss and stability of mplants supporting maxillary prostheses. MATERIALS AND METHODS. Ninety-six implants were placed in sixteen completely edentulous maxillary ridges. Patients were randomly divided into two groups: Group A, implants were placed with a cantilever to anterior-posterior AP spread length (CL:AP) at a ratio of 1:3; Group B, implants were placed with a CL:AP at a ratio of 1:2. Patients were further divided into four sub-groups: Groups A1, A2, B1, and B2. Groups A1 and B1 received small diameter implants while Groups A2 and B2 received standard diameter implants. Bone height and stability measurements around each implant were performed at 0, 4, 8 and 24 months after definitive prostheses delivery. RESULTS. Statistical analysis of the mean implant stability and height values revealed an insignificant difference between Group A1 and Group A2 at all the different time intervals while significantly higher values in Group B1 in comparison with Group B2. Results also showed significantly higher values in Group A1 in comparison with Group B1 and an insignificant difference between Group A2 and Group B2 at all the different time intervals. CONCLUSION. It can be concluded that the use of small diameter implants placed with a CL:AP at a ratio of 1:3 provided predictable results and that the 1:2 CL:AP significantly induced more critical bone loss in the small diameter implants group, which can significantly reduce long term success and survival of implants

Regulation of chicken vanin1 gene expression by peroxisome proliferators activated receptor α and miRNA-181a-5p

  • Wang, Zhongliang;Yu, Jianfeng;Hua, Nan;Li, Jie;Xu, Lu;Yao, Wen;Gu, Zhiliang
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.172-184
    • /
    • 2021
  • Objective: Vanin1 (VNN1) is a pantetheinase that can catalyze the hydrolysis of pantetheine to produce pantothenic acid and cysteamine. Our previous studies showed that VNN1 is specifically expressed in chicken liver. In this study, we aimed to investigate the roles of peroxisome proliferators activated receptor α (PPARα) and miRNA-181a-5p in regulating VNN1 gene expression in chicken liver. Methods: 5'-RACE was performed to identify the transcription start site of chicken VNN1. JASPAR and TFSEARCH were used to analyze the potential transcription factor binding sites in the promoter region of chicken VNN1 and miRanda was used to search miRNA binding sites in 3' untranslated region (3'UTR) of chicken VNN1. We used a knock-down strategy to manipulate PPARα (or miRNA-181a-5p) expression levels in vitro to further investigate its effect on VNN1 gene transcription. Luciferase reporter assays were used to explore the specific regions of VNN1 targeted by PPARα and miRNA-181a-5p. Results: Sequence analysis of the VNN1 promoter region revealed several transcription factor-binding sites, including hepatocyte nuclear factor 1α (HNF1α), PPARα, and CCAAT/enhancer binding protein α. GW7647 (a specific agonist of PPARα) increased the expression level of VNN1 mRNA in chicken primary hepatocytes, whereas knockdown of PPARα with siRNA increased VNN1 mRNA expression. Moreover, the predicted PPARα-binding site was confirmed to be necessary for PPARα regulation of VNN1 gene expression. In addition, the VNN1 3'UTR contains a sequence that is completely complementary to nucleotides 1 to 7 of miRNA-181a-5p. Overexpression of miR-181a-5p significantly decreased the expression level of VNN1 mRNA. Conclusion: This study demonstrates that PPARα is an important transcriptional activator of VNN1 gene expression and that miRNA-181a-5p acts as a negative regulator of VNN1 expression in chicken hepatocytes.

광역 네트워크 트래픽의 장거리 상관관계와 1/f 노이즈 (Long-Range Dependence and 1/f Noise in a Wide Area Network Traffic)

  • 이창용
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권1호
    • /
    • pp.27-34
    • /
    • 2010
  • 본 논문에서는 네트워크 트래픽의 수동적 측정치 분석을 통해 잘 알려진 장거리 상관관계가 광역 네트워크의 능동적 측정치에도 존재하는지 여부를 관련 분석법을 통하여 검정하고자 한다. 이를 위하여 PingER 프로젝트를 통하여 측정된 광역 네트워크 트래픽의 대표적인 능동적 측정치인 RTT(Round Trip Time)와 RTT의 변동성 시계열 데이터에 대하여 분석을 수행하였다. RTT 시계열 데이터는 장거리 상관관계 혹은 1/f 노이즈의 특성을 보였으며, RTT의 고차원 변화량으로 정의된 변동성은 로그정규분포를 따르며 변동성에 대한 장거리 상관관계는 고려하는 시간 간격이 짧은 경우 장거리 상관관계를 보이고, 시간 간격이 긴 경우에는 장거리 상관관계 혹은 1/f 노이즈를 따름을 밝혔다. 본 연구를 통해 볼 때 장거리 상관관계는 비단 패킷 도착의 시간 간격 등과 같은 수동적 측정뿐만 아니라 RTT와 같은 능동적 측정에서도 나타나는 특징이며, 특히 능동적 측정에는 수동적 측정에는 잘 나타나지 않는 1/f 노이즈 특성이 존재함을 밝혔다.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF

손실이 주기적으로 보상되는 광섬유에서의 솔리톤 전송에 대한 수치적 분석 (Numerical Analysis of Optical Soliton Transmission in Fibers with Periodically Compensated Loss)

  • 이명우;김란숙;서동선
    • 한국통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1191-1202
    • /
    • 1994
  • 집중 광증폭기에 의해 손실이 주기적으로 보상되는 광섬유에서 광솔리톤 펄스 열의 안정된 전송을 위한 영역을 모의실험을 통하여 조사하였다. 광섬유 손실이 0.2dB/Km이고 증폭기 간의 거리 L이 25km인 경우, 허용 가능한 솔리톤의 초기 크기 A의 범위는 1.2~1.5이었고 이때 솔리톤의 전치반폭으로 정규화된 솔리톤 간의 거리 의 최소값은 대략 6으로 나타났다. 증폭기간의 거리 L이 50km인 경우, 정규화된 솔리톤간의 거리 를 6으로 유지할 때, 허용 가능한 A의 범위는 1.5~1.7로 나타났다. 안정된 솔리톤 전송을 위한 집중 증폭기 각각의 최대 허용가능한 손실 보상의 변화량은 L=25[km], A=1.3 및 -6일 때 +-4%로 나타났으며, L=50[km], A=1.6 및 =는 6일 때는 +-2%로 나타났다. 일반적으로 솔리톤 초기진폭 A 및 증폭기 이득의 허용 가능한 범위는 증폭기간의 거리 L에 반비례 하는 것으로 나타났다.

  • PDF

PAIR MEAN CORDIAL LABELING OF GRAPHS OBTAINED FROM PATH AND CYCLE

  • PONRAJ, R.;PRABHU, S.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.85-97
    • /
    • 2022
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}\;=\;\{\array{{\frac{p}{2}}&p\text{ is even}\\{\frac{p-1}{2}}\;&p\text{ is odd,}}$$ and M = {±1, ±2, ⋯ ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{S}}_{{\lambda}_1}-\bar{\mathbb{S}}_{{\lambda}^c_1}{\mid}{\leq}1$ where $\bar{\mathbb{S}}_{{\lambda}_1}$ and $\bar{\mathbb{S}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling of graphs which are obtained from path and cycle.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권1_2호
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).

ON PAIR MEAN CORDIAL GRAPHS

  • R. PONRAJ;S. PRABHU
    • Journal of Applied and Pure Mathematics
    • /
    • 제5권3_4호
    • /
    • pp.237-253
    • /
    • 2023
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}=\{\array{{\frac{p}{2}} & \;\;p\text{ is even} \\ {\frac{p-1}{2}} & \;\;p\text{ is odd,}$$ and M = {±1, ±2, … ± ρ} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling ${\frac{{\lambda}(u)+{\lambda}(v)}{2}}$ if λ(u) + λ(v) is even and ${\frac{{\lambda}(u)+{\lambda}(v)+1}{2}}$ if λ(u) + λ(v) is odd such that ${\mid}{\bar{{\mathbb{S}}}}_{\lambda}{_1}-{\bar{{\mathbb{S}}}}_{{\lambda}^c_1}{\mid}{\leq}1$ where ${\bar{{\mathbb{S}}}}_{\lambda}{_1}$ and ${\bar{{\mathbb{S}}}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling behavior of few graphs including the closed helm graph, web graph, jewel graph, sunflower graph, flower graph, tadpole graph, dumbbell graph, umbrella graph, butterfly graph, jelly fish, triangular book graph, quadrilateral book graph.

AN ISOMORPHISM OF THE COUSIN COMPLEXES

  • Kim, Dae-Sig
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.491-497
    • /
    • 1997
  • Let $C(F, M)$ and $C(S^{-1}F, S^{-1}M)$ be Cousin complexes for a modula M and a module $S^{-1}M$ over a commutative Noetherian ring with respect to a filtration F and a filtration $S^{-1}F$ respectively. In this paper, it is shown that there is an isomorphism between the Cousin complexes $S^{-1}C(F, M)$ and $C(S^{-1}F, S^{-1}M)$.

  • PDF