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The Existence of a Unique Invariant Probability
Measure for a Markov Process Xnn= f(Xn)+ &énu’

QOesook Lee*

ABSTRACT

We consider a Markov process {Xn} on [0,00)k which is generated by Xn,= f(Xn)+
£n where f is a continuous, nondecreasing concave function, Sufficient conditions for

the existence of a unique invariant probability measure for {Xa} are obtained.

1. Introduction

Dubins and Freedman(1966) have given necessary and sufficient conditions for the
existence of a unique invariant probability measure for a Markov process generated by
continuous nondecreasing functions on [0,1].

Yahav (1976) has removed the restriction of compactness on the state space.

In this paper, we consider the Markov process which is generated by a stochastic dif-

ference equation.
Xpu= f(Xn)+ €an, n=0 (1.1)

where £,(n=1) is a sequence of independent, identically distributed(i.id.) random vectors
on S=[0,00)k, K=1 with common distribution P, f= ({*, f@ ... f®) ig a continuous non-
decreasing function on S into S such that each f" is concave and has first partial deriv-
atives, Xo can be taken arbitrary but independent of &n(n=1). Also, assume S is equipped

* This research was supported by KOSEF. Grant 883—0105-002~1.
* Department of Statistics, Ewha Womans University.



Iavariant probability for X,41= f(Xp)+&nn" 63

with the Euclidean norm | - |, and E | &,]12< .
Sufficient conditions for the existence of a unique invariant probability are obtaind for
such Markov process, extending earlier results of Yahav to multidimensional state space,

2. Notations and Lemmas

Let fen(y)= f(y) + én
g(y)=Elf, ()] g"(y)= g(g™(y)), n=2.

Then we may express Xn(y), which is the process generated by (1.1) whose initial
distribution, distribution of X,, is concentrated in y as

Xa(y)= fan(fen1(---(fa(y))).

Clearly g(y) is continuous, nondecreasing, and concave for each coordinate,

Here for a,beS, a<b means a') <b" for 1=<:<k, where a'” is the it coordinate of
a, and a<b if a<b but a=b,

We make the following assumptions
(A-1) There exists yo>0 such that

(1) g(yo)= vyo, (ii) for y<yo, g(y) >y, (iil) for y>yo, g(y)<y.

(A-2) The eigenvalues of A are all less than one in magnitude, where

af'"” .
A= qir (vo)),  1si, j=k.

Lemma 1. P (Xn(0)=x) is nonincreasing in n and hence converges,

Proof. Let Xa(0)= £, f, (-+(f, (0))). Then Rn(0) is nondecreasing in n. Since Ra(0)
2 n
and X,(0) have the same distribution, the lemma follows. I

Lemma 2. Under the assumption (A—1), for every y=yo, Xa(y) converges with prob-
ability 1 as n—oo,

Proof. Let X, (y)= ffl(i)(ffz(m(ff (v))) and let B, be the o—field generated by ¢,.&,,
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.-+&n. Then Jensen’s inequality shows that

E [inﬂm(Y)l Bn] = f‘lm(féz (...(E(f{n_H(y)))
= ffl(t)(ffz(.“(ffn(g(Y))) as.

Since f{‘”f{z---ff is nondecreasing, by (A-1)(iil) for any y<yo,
1

n

E [inﬂ(i)(}’)l Bn] = Xnm(Y) a.s.

Hence X,.,(y) (y=yo) is a nonnegative supermartingale with E [X.(y)] = vy for
all n, which implies that for y=yso, ')v(n(”(y) converges a.s.. Hence the conclusion follows
from the fact that )'\('n(y) and X,(y) have the same distribution. B

Lemma 3. Let the assumption (A-1) hold and let & be not concentrated in one point
for all 1=:<k, Then for 6>0 sufficiently small,

P [Xa(0)2yo+ ¢ for some n] = 1.
Proof. Note that
P [fﬂ(y)zg(y)] >0 for all /=1 and y€S.
Hence we have,

P [Xa(0)= g"(0)]= P [X,(0)=2g(0), Xz(0)=g*(0), -, Xn(0)2g™(0)]
= P [X,(0)=2g(0)] p [X.(0)=g%(0) | X,(0)=g(0)]
P [X,(0)=g%(0) | X:(0)=g(0), X(0)=g%(0)]

P [Xa(0)=g™(0) | X,(0)2g(0), - Xn1(0)Zg"(0) ]

=P [f{l(o)gg(o)] P [f[z(g(())ggz(o)] .........
- P[f, (g -1(0))=g™(0)]>0.

Since g°(0) 1 o, for any £>0, there exists n,(¢) such that P[Xp, (0) 2y,—¢] >0 and

by lemma 1, we have for any n=n,(¢),
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P [Xn(0)2yo—¢] >0. (2.1)
Under the assumption & is not concentrated in one point, we have

P [f{l‘” (yo) > vo''] >0 for 1=i=k. (2.2)

Since £, (’- ) is continuous at yo,(2.1) with sufficiently small £>0 and (2.2) imply. that,
for sufficiently small 6 >0, there exists n, such that

P [an(o) 2 yo+ 9] > 0. (2.3)
Now,

P [Xn(0)<yo+ ¢ for all n]
<P [an2(0)<yO+ d for every m = 1, 2, 3,---, k]
<P [XnZ(O)<Yo+ &]- P [XZHZ(O)<Y0+ ¢ | X, (0)<yo+ 9]
------ P X, (0)<yot ¢ [ X (0) <yot 9, for j=12,k—1]
= {P [X, (0)<yot o]}«

The above inequalities hold for all kgl and therefore the required result
P [Xn(0) <yo+ ¢ for all n] = 0 follows from (23). W

Let  (S) be the set of all probability measures on S and let p™(y,B)= P [Xa(y) € B],
Be B(S), n=1,2,3,-+ where 8(S) denotes the Borel s—field of S. On p (S), define the
bounded Lipschitzian distance of Dudley (1966):

J#—vjo=sup{ | { fdu— §fdv| : f € BL} (upep(S))

where BL= {f:f:S—R such that|f(x)—f(y)|=<1 ¥xy ahd | f(x)—f(y) | =|x-y| ¥xy}.
It is known that || - | g, metrizes the weak" topology on p (S).

Lemma 4. Let Xy, = AXp+ &nn Where &, is 1id. with taking values in S and
E|é&|*<oo, and A kxk matrix whose eigenvalue A all satisfy | | <1. Then there exists
a unique invariant distribution for {X,} and for any y in S

lm E [Xa(y)] = (£ A" E(e)= (1-A)"E(&).
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Proof. Let C be any bounded set in S. Then one has for all y,, y,€C,

| P™(v.dz) — p™(y,dz) fg= sup { | Ef(Xa(y:)) —Ef(Xa(yz))| : f€BL}
=E [ | Xaly1) — Xn(y2) | A 1]
=< J A" - diam C— 0 as n—>oo, (24)

Similarly for all nm,

| 5% ™(0,dz)— pP(0d2) s < E [| Knem(0)~Kn(0)| A 1]
E [lAn(Am—1€n+m+ o+ Enn) | A 1]
P [lAm_lfmm"' R iR WPl M]

+ P [diam AMB(OM))>¢] + ¢

IA

where X,(0)= ffl(ffz(m(ffn(o))) and M/I)= {XeS:I1XI=M}.
7 Given £>0, let d=¢ /3. Then by Chebyshev’s i;lequality, we may choose M= M such
that
P [| A™nmt A™ 2 nmat o+ + €nn | >M,]<€6/3, m= 123,
Since diam A™B(0,M,))< [ A"l - M, P [diam A"(B(OM,))>¢ /3] - 0 as n—>c,
Hence for all sufficiently large n,
| p™™(0,dz) — P (0,dz)ls< & m=1,23,

Since (p(s), I - I g.) is a complete metric space, it follows that there exists a probability
measure, say = such that

ip™(0,dz) — n(dz)|lge— 0 as n —>oo, (2.5)

(2.4) and (25) imply the uniform convergence on C to «. Since, in this case,

§ f(z)p®(y,dz) is a bounded continuous function whenever f is bounded continuous, the
weak convergence of p™(y,dz) to m(dz) for all y implies that = is the unique invariant
probability. Hence the proof for the first part of lemma 4 is completed.
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Now consider

E [Xa(y)]= AW 4+ E [ j)zjnlA"'fej]
= Aty 4 ( riolAj) E(e).
p=

But lim E [Xa(y)]=( i}Af) E(e,), since A"—>0 as n—>oo,
n—oo j=

The proof follows from the fact that fé A/= (I-A)? if eigenvalue A of A all satisfy
=
Al<1l. B

From the concavity of £, we have

fy)=VED(yo)(y—vo) + £9(y0)

where 7£(y,) is the gradient of f (Roberts and Vererg(1973)),and hence we can write

f(y)= A(y—vo) + f(yo)

where A is a kxXk matrix given in (A—2).
Define f(y)= A(y—yo) + £(yo). Then £(y)=<?(y) and F(yo)= £(yo).
Now let {Xi(y) : n=1} be the Markov process generated by

X;ﬂ: f(X;)+ €nn
= A(Xh— yo) + f(yo) + €nu

with Xg=v.
Lemma 5. Under the assumptions (A —2) and g(y,) = Yo, {X&(y): n=1} is a Markov
process with a unique limiting stationary distribution and Lm E [Xa(y)] = Vo for all

yeS,

Proof. Let ¢i= 1(yo) — Ayo+ én. Then



68 Oesook Lee
A(y) = A%y + 3% A
By assumption (A —2) and lemma 4, we have
,Ilif; E[ Xa(y)] = (I-A)* E(&).
But E(¢]) = f(vo) + E(&) = Ayo= Yo— Ayo = (I-A)yo. Hence lm E [Xa(y)]
=v,.

Lemma 6. Under the assumptions (A—1) and (A —2), we have for every ¢>0

P [Xa(y) = yo+dio] =1

Proof. First show that P [X}i(y) < yo + ¢ i0.] = 1.
Recall that for any y in S, rlll_r.g’ E[Xi(v)] = vYo.
Suppose P [Xi(y) = yot+ ¢] = 0. Then

EA= Sunrpete Xn(¥) AP+ § ity cyorm Xaly) dP
> Yotd

‘which Is not true for sufficiently large n. Hence
P [XH(Y)= yot+ ¢] >0 (2.6)
for sufficiently large n. Since {Xi(y)=< yo+ ¢ i.0.} is an invariant tail event and Xi(y)

is a Markov process with a unique limiting stationary distribution, (2.6) implies P [ X;(y)
< yo+ ¢ 1.0.] = 1. The proof follows from the relation Xn(y)< Xa(y) as. W

3. Main Theorem

Theorem. Let the assumptions (A-1) and (A-2) hold. If e("l) is not concentrated in one
point for all 1=¢=<k, then the process {Xn(y): n=1} has a unique invariant probability

measure.

Proof. Let Hy"(x) = P [Xn(y)=x]
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Fy(x) = lm Hy"(x).
n—oo

Let 6>0 be fixed.
Define = inf{n : Xn(0)2 yo+ ¢}. Then by lemma 3, P(r,<c0) = 1.

Now we can write

P [Xn(0) £ x mign] = 31P [Xa(0) < x, =]

= IP[Xn(O) S X m=1]Pr= 7)

Eni { Syzyow Hn"y(x) dQ,(y | 7= 1-)} - P(m,=1)

(3.1)

IN

H?o_id‘(x)' P(r,=1)
where Q(y | 7= i)= P[X~ (0) < y | 7= {] and

Qi(y | 7= )= 0 whenever P (m,= i) =,

The last inequality follows from H“y'"(x) < HY}', (x) for all y=y,+¢. By lemma
1 and lemma 2, the limits of the first and last term of (3.1) exist, and hence we have

Fo(x) = Fyg+e(x).
But since Ho"(x)= H4(x) for all n, we get

Fo(x)=F, ,,(x). (32)
Now for any y, 0<y=<yo+ d,

Ho"(x) 2 Hy"(x)= Hye(x).

Taking limits on Ho"(x), Hfj+¢(x), and using the equation (3.2) we have for all y, 0=
Yy = yot d,

Fo(x)= Fy(x)

Let y,>y,+ ¢ and define 7,= inf{n : Xa(y,) <yo+ ¢}. Then by lemma 6, P(1,<c0)=1.

Now, consider
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n

P[Xn (YJ) SX, T2 Sn] ZP[X (YI <Xa Ty = J]

> S0 B ()40, (9 17 =3) ) - P(r2 =)

2 ST (%) B (12 =)

j=1

-~
-

where Q,(y, | .= j)= P[X~(y) < x| 7=)
By lemma 2, we have Fy.(x) = Fy+s(x). But for all n, H(x) <HE 4(x),

and hence for any y, y 2 yo+ 9,
Fy(x) = Fyot+e(X)=
Hence for any y €S,
Fy(x)= Fo(x). (3.3)
To prove the stationarity of Fo(x), consider
Hyi (x)= §g Hy'(x) dHo™(y).

Since f( - ) is continuous, Hy'(x) is continuous and uniformly bounded, and hence, by
the Helly —Bray lemma, we get

Fo(x)= {5 Hy'(x) dFo(y). (3.4)
Now let = be the probability measure on S corresponding to Fo(x), that is
m([ox]) = Fo(x).
Then (3.3) says for any x in S, the n—step transition probability function p™(y,[0,x])
= Hy"(x) converges to =([0,x]) for all y.

We may rewrite (3.4) as

m([ox])={gp(y, [0x]) n(dy), X€S
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which implies that = is an invariant probability for {Xa}.
To prove the uniqueness of =, let v be another invariant probability measure for {Xa}.
Then

v([0,x])= {4 p™ (v, [0,x]) v(dy), for all n.
Taking limits in above equation, we have
v([0x])= S s7([0,x]) »(dy) =n([ox]), x€s

which implies v=m,
Hence we complete the proof. W
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