• 제목/요약/키워드: A-isotropic

검색결과 1,575건 처리시간 0.032초

Evaluation of dynamical performance of 3 dimensional multi-arm robot (3차원 다중 로봇의 동적 성능 평가)

  • 김기갑;김충영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.756-759
    • /
    • 1997
  • Multi-arm cooperation robot system is required for more specific and dextrous jobs such as transferring very large or heavy objects, or grasping work piece while processing on it. There is little research on 3-dimensional multi-arm robot. Here we propose two performance indices presenting isotropy of end-effector's acceleration and velocity capabilities with constraints of joint torques, that is Isotropic Acceleration Radius [IAR] and Isotropic Velocity Radius [IVRI. Also the procedure to find 3-dimensional IAR, IVR is proposed, where available acceleration set concept is used. The case of 3-dimensional two 3 joint robot system was simulated and the distributions of IAR, IVR was studied.

  • PDF

Spring-back Evaluation of Automotive Sheets Based on Combined Isotropic-Kinematic Hardening Rule (Combined Isotropic-Kinematic 경화규칙에 기초한 자동차용 알루미늄합금-및 Dual-Phase 강 판재의 스프링백 예측)

  • ;;;Chongmin Kim;Michael L. Wenner
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.144-147
    • /
    • 2003
  • In order to evaluate spring-back behavior in automotive sheet forming processes, a panel shape idealized as a SS-rail has been investigated. After spring-back kas been predicted fer SS-rails using the finite element analysis, results has been compared with experimental measurements for three automotive sheets. To account for hardening behavior such as the Bauschinger and transient effects in addition to anisotropic behavior, the combined isotropic-kinematic hardening law based on the Chaboche type single-surface model and a recently developed non-quadratic anisotropic yield function have been utilized, respectively.

  • PDF

A Frequency Resource Assignment Algorithm for FH Radio Using Isotropic Multi Dimension Array (등방 다차원 배열을 이용한 FH 무전기용 주파수 자원 할당 알고리즘)

  • Lee, Seong-Min;Han, Joo-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제9권4호
    • /
    • pp.24-31
    • /
    • 2006
  • To reduce the interferences between the radio equipments which are operated in frequency hopping mode, the frequency resource should be assigned to each equipment without overlapping when several groups of radio equipments operate in the same area. If the radio equipments are in a different area, the partial frequency overlaying can be permitted. From the isotropic multi-dimensional array, several frequency assignment tables can be extracted for a same area. Also several tables can be extracted for different areas. Since there can be no overlapped frequencies between the tables for the same area, no interference between the radio equipments in an area is guaranteed. The frequencies overlapped between 2 tables for 2 different areas are pre-planed as required. The interference performance in frequency hopping radio can be controlled as desired using the proposed Frequency Resource Assignment Algorithm using Isotropic multi-dimensional Array.

Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain

  • Lata, Parveen;Kaur, Harpreet
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.369-381
    • /
    • 2019
  • The objective of this paper is to study the two dimensional deformation in transversely isotropic thermoelastic medium without energy dissipation due to time harmonic sources using new modified couple stress theory, a continuum theory capable to predict the size effects at micro/nano scale. The couple stress constitutive relationships have been introduced for transversely isotropic thermoelastic medium, in which the curvature tensor is asymmetric and the couple stress moment tensor is symmetric. Fourier transform technique is applied to obtain the solutions of the governing equations. Assuming the deformation to be harmonically time-dependent, the transformed solution is obtained in the frequency domain. The application of a time harmonic concentrated and distributed sources have been considered to show the utility of the solution obtained. The displacement components, stress components, temperature change and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effects of angular frequency are depicted graphically on the resulted quantities.

Effects of Anisotropic Fiber Packing on Stresses in Composites (이방성 섬유의 배열이 복합재료의 응력에 미치는 영향)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제28권9호
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • 제27권3호
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

A novel hyperbolic integral-Quasi-3D theory for flexural response of laminated composite plates

  • Ahmed Frih;Fouad Bourada;Abdelhakim Kaci;Mohammed Bouremana;Abdelouahed Tounsi;Mohammed A. Al-Osta;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.233-250
    • /
    • 2023
  • This paper investigates the flexural analysis of isotropic, transversely isotropic, and laminated composite plates using a new higher-order normal and shear deformation theory. In the present theory, only five unknown functions are involved compared to six or more unknowns used in the other similar theories. The developed theory does not need a shear correction factor. It can satisfy the zero traction boundary conditions on the top and the bottom surfaces of the plate as well as account for sufficient distribution of the transverse shear strains. The thickness stretching effect is considered in the computation. A simply supported was considered on all edges of the plate. The plate is subjected to uniform and sinusoidal distributed load in the static analysis. Laminated composite, isotropic, and transversely isotropic plates are considered. The governing equations are obtained utilizing the virtual work principle. The differential equations are solved via Navier's procedure. The results obtained from the developed theory are compared with other higher-order theories considered in the previous studies and 3D elasticity solutions. The results showed that the proposed theory accurately and effectively predicts the bidirectional bending responses of laminated composite plates. Several parametric studies are presented to illustrate the various parameters influencing the static response of the laminated composite plates.

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Kim, Jin-kwang;Cho, Sang-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.33-44
    • /
    • 2002
  • The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF

Multi-scale coherent structures and their role in the energy cascade in homogeneous isotropic turbulence

  • Goto, Susumu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.355-358
    • /
    • 2008
  • In order to investigate the physical mechanism of the energy cascade in homogeneous isotropic turbulence, we introduce Galilean-invariant energy and its transfer rate in the real space as a function of position, time and scale. By using a database of direct numerical simulations (DNS) of homogeneous isotropic turbulence, it is shown that (i) fully developed turbulence consists of multi-scale coherent vortices of tubular shapes, (ii) the energy at each scale is mainly confined in vortex tubes with the radii of the same order of the length scale, and (iii) the energy transfer takes place around pairs (especially, anti-parallel pairs) of such vortex tubes. Based on these observations, it is suggested that the energy cascade can be caused, in the real space, by the process of the stretching and creation of smaller (i.e. thinner) vortex tubes by the straining field around pairs of larger (i.e. fatter) vortex tubes. Indeed, it is quite easy to find such events (in our DNS fields) which strongly support this scenario of the energy cascade.

  • PDF