• Title/Summary/Keyword: A horizon

Search Result 877, Processing Time 0.025 seconds

Receding horizon controller deign for fuzzy systems with input constraints

  • Jeong, Seung-Cheol;Choi, Doo-Jin;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.4-83
    • /
    • 2002
  • $\bullet$ We present a state-feedback RHC for discrete-time TS fuzzy systems with input constriants. $\bullet$ The controller employ the current and one-step past information on the fuzzy weighting functions. $\bullet$ It is obtained from the finite horizon optimization problem with the invariant ellipsoid constraint $\bullet$ Under parameterized LMI conditions on the terminal weighting matrix $\bullet$ The closed-loop system stability is guaranteed. $\bullet$ The parameterized linear matrix inequalities are relaxed to a finite number of solvable LMIs.

  • PDF

MPC based Steering Control using a Probabilistic Prediction of Surrounding Vehicles for Automated Driving (전방향 주변 차량의 확률적 거동 예측을 이용한 모델 예측 제어 기법 기반 자율주행자동차 조향 제어)

  • Lee, Jun-Yung;Yi, Kyong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.199-209
    • /
    • 2015
  • This paper presents a model predictive control (MPC) approach to control the steering angle in an autonomous vehicle. In designing a highly automated driving control algorithm, one of the research issues is to cope with probable risky situations for enhancement of safety. While human drivers maneuver the vehicle, they determine the appropriate steering angle and acceleration based on the predictable trajectories of surrounding vehicles. Likewise, it is required that the automated driving control algorithm should determine the desired steering angle and acceleration with the consideration of not only the current states of surrounding vehicles but also their predictable behaviors. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, we define a safe driving envelope with the consideration of probable risky behaviors among the predicted probable behaviors of surrounding vehicles over a finite prediction horizon. For the control of the vehicle while satisfying the safe driving envelope and system constraints over a finite prediction horizon, a MPC approach is used in this research. At each time step, MPC based controller computes the desired steering angle to keep the subject vehicle in the safe driving envelope over a finite prediction horizon. Simulation and experimental tests show the effectiveness of the proposed algorithm.

A Study on the Improvement of National Marine Pollution Response Policy based on the Analysis of Gulf of Mexico Oil Spill Incident (미국 멕시코만 오염사고 분석을 통한 국가방제정책 개선방안 연구)

  • Kim, Sang-Woon;Lim, Chang-Soo;Lee, Wan-Sub;Ha, Chang-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • On April 20, 2010, semi-submersible offshore drilling unit Deepwater Horizon was exploded and sank, and 4.9 million barrels(about 778 thousand tons) of crude oil was spilled into the Gulf of Mexico. As more than one year has been passed since the incident, a lot of investigation reports and lessons learned have been made public and also a lot more will be released soon. This paper studies the final report of the National Commission on "the BP Deepwater Horizon Oil Spill and Offshore Drilling", which was organized by the executive directive of U.S. President Barack Obama, and the interim report of Joint Investigation team of U.S. Coast Guard and BOEMRE of "Report of Investigation into the Circumstances Surrounding the Explosion, Fire, Sinking and Loss of Eleven Members Aboard the Mobile Offshore Drilling Unit Deepwater Horizon". The review is focused on the response to the oil spill. And the paper suggests how to improve national marine pollution response policy. In the paper, the Korean governments is suggested to reinforce the capability for instructing and supervising the responsible party's source control measures, to review how to introduce in-situ burning and vessel of opportunity program into our country, and to continue monitoring on the progress of developments of R&D projects related to oil spill response in the U.S..

A Dye Tracer Study of Infiltration Pattern in a Residual Soil Developed from Granite (화강암 기원 잔적토양에서 염료추적자의 침투 유형에 관한 연구)

  • 전철민;김재곤;이진수;김탁현
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • Understanding flow pattern of water and solute in subsurface is essential for the reduction and prevention of contamination of soil and groundwater and for the investigation and remediation of contaminated site. The objective of this study is to examine the infiltration pattern in a soil developed from the Jurassic granite using (Brilliant Blue FCF $C_{37}H_{34}N_{2}Na_{2}O_{9}S_{3}$), the nonfluorescent and nontoxic food dye. All image processing was conducted using geographic image processing software, ER Mapper, Version 6.2. The dye coverage was determined by counting the stained pixels in the photographs (80${\times}$80cm, 80TEX>${\times}$5cm) for the vertical and horizontal view. A homogeneous matrix flow occurred in the A horizon with weak, medium granular structure and fingering at the interface of finer-textured A horizon and coarser-textured C horizon. Pegmatitic vein originated from the granite and plant root in C horizon induced preferential flow.

Design of a generalized predictive controller for nonlinear plants using a fuzzy predictor (퍼지 예측기를 이용한 비선형 일반 예측 제어기의 설계)

  • Ahn, Sang-Cheol;Kim, Yong-Ho;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-279
    • /
    • 1997
  • In this paper, a fuzzy generalized predictive control (FGPC) for non-linear plants is proposed. In the proposed method, the receding horizon control is applied to the control part, while fuzzy systems are used for the predictor part. It is suggested that the fuzzy predictor is time-varying affine with respect to input variables for easy computation of control inputs. Since the receding horizon control can be obtained only with a predictor instead of a plant model, the fuzzy predictor is obtained directly from input-output data without identifying a plant model. A parameter estimation algorithm is used for identifying the fuzzy predictor. The control inputs of the FGPC are computed by minimizing a receding horizon cost function with predicted plant outputs. The proposed controller has a similar architecture to the generalized predictive control (GPC) except for the predictor synthesis method, and thus may possess inherent good properties of the GPC. Computer simulations show that the performance of the FGPC is satisfactory.

  • PDF

Deep Learning based Photo Horizon Correction (딥러닝을 이용한 영상 수평 보정)

  • Hong, Eunbin;Jeon, Junho;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2017
  • Horizon correction is a crucial stage for image composition enhancement. In this paper, we propose a deep learning based method for estimating the slanted angle of a photograph and correcting it. To estimate and correct the horizon direction, existing methods use hand-crafted low-level features such as lines, planes, and gradient distributions. However, these methods may not work well on the images that contain no lines or planes. To tackle this limitation and robustly estimate the slanted angle, we propose a convolutional neural network (CNN) based method to estimate the slanted angle by learning more generic features using a huge dataset. In addition, we utilize multiple adaptive spatial pooling layers to extract multi-scale image features for better performance. In the experimental results, we show our CNN-based approach robustly and accurately estimates the slanted angle of an image regardless of the image content, even if the image contains no lines or planes at all.

Development of a PC-based 3-D Seismic Visualization Software (PC 기반의 3차원 탄성파 자료 시각화 소프트웨어 개발 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • A software to visualize and analyse 3-D seismic data is developed using OpenGL, one of the most popular 3-D graphic library, under the PC and Windows platform. The software can visualize the data as volume and slices, whose color distribution is specified by a special dialog box that can pick a color in RGB or HSV format. The dialog box can also designate opacity values so that several 3-D objects can be displayed superimposed each other. Horizon picking is implemented very easily with this software thanks to the guided picking method. The picked points from a horizon will compose a set of points, mesh, and a surface, which can be viewed and analysed in three dimensions.

Event Horizon Telescope : Earth-sized mm-VLBI array to image supermassive black holes

  • Kim, Jae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2019
  • Immediate vicinity of a supermassive black hole (SMBH) is an important place to test general relativity in strong gravity regime. Also, this is a place where mass accretion and jet formation actively occurs at the centers of active galaxies. Theoretical studies predict presence of bright ring-like emission encircling an accreting SMBH with a diameter of about 5 Schwarzschild radii, and a flux depression at the center (i.e., BH shadow). Direct imaging of the BH shadow is accordingly of great importance in modern astrophysics. However, the angular sizes of the horizon-scale structures are desperately small (e.g., ~40-50 microarcseconds (uas) diameter for the nearest best candidates). This poses serious challenges to observe them directly. Event Horizon Telescope (EHT) is a global network of sensitive radio telescopes operating at 230 GHz (1.3 mm), providing ultra-high angular resolution of 20 uas by cutting-edge very long baseline interferometry techniques. With this resolution, EHT aims to directly image the nearest SMBHs; M87 and the galactic center Sgr $A{\ast}$ (~40-50 uas diameters). In Spring 2017, the EHT collaboration conducted a global campaign of EHT and multiwavelength observations of M87 and Sgr $A{\ast}$, with addition of the phased ALMA to the 1.3mm VLBI array. In this talk, I review results from past mm-VLBI and EHT observations, provide updates on the results from the 2017 campaign, and future perspectives.

  • PDF

Robust $H_{\infty}$ FIR Sampled-Date Filtering for Uncertain Time-Varying Systems with Unknown Nonlinearity

  • Ryu, Hee-Seob;Byung-Moon;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • The robust linear H(sub)$\infty$ FIR filter, which guarantees a prescribed H(sub)$\infty$ performance, is designed for continuous time-varying systems with unknown cone-bounded nonlinearity. The infinite horizon filtering for time-varying systems is systems is investigated in therms of two Riccati equations by the finite moving horizon.

  • PDF

a survey and some new stability results

  • Byun, Dae-Gyu;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.734-740
    • /
    • 1987
  • Various kinds of predictive control design methods such as MAC(Model Algorithmic Control), DMC(Dynamic Matrix Control), MC(Extended Horizon Adaptive Control), GPC(Generalized Predictive Control), RHTC(Receding Horizon Tracking Controller), and PVC(PreView Controller) are surveyed and compared in this paper. In addition, stability properties of these control laws known to date are summarized and some new stability results are presented.

  • PDF