• Title/Summary/Keyword: A flow constant

Search Result 1,889, Processing Time 0.078 seconds

Stokes Flow Through a Microchannel with Projections of Constant Spacing (일정 간격의 돌출부를 갖는 마이크로채널 내의 스톡스 유동 해석)

  • Son, JeongSu;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.335-341
    • /
    • 2015
  • In this study, we analyzed a two-dimensional Stokes flow through a microchannel containing projections with constant spacing attached to each wall. The projections on the top and bottom walls were semi-circular in shape, with in-phase locations. By considering the periodicity and symmetry of the flow, the eigenfunction expansion and least squared error method were applied to determine the stream function and pressure distribution. For some typical radius and spacing values, the streamline patterns and pressure distributions in the flow field are shown, and the shear stress distributions on the boundary walls are plotted. In addition, the average pressure gradients in the microchannel are also calculated and shown with the radius and spacing of the projections. In particular, the results for the case of extremely small gaps between the projections on the top and bottom walls are in good agreement with the lubrication results.

Effect of Reynolds Number on the Flow Characteristics of a Control Valve (제어밸브 유량특성에 레이놀즈 수가 미치는 영향)

  • Jung, Taekyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.995-999
    • /
    • 2017
  • The factors affecting the flow coefficient of a control valve were identified and analyzed. The flow coefficient of a control valve are affected by not only Reynolds Number but also the figure and the roughness of the inlet/outlet pipes. Therefore, the flow coefficient is not a constant value. For the purpose of use in the system such as LRE, requiring the exact flow-coefficient of a control valve, the flow-coefficient should be measured under similar Reynolds Number using the inlet and outlet pipes which have the same figure and roughness with a real system.

  • PDF

An Analysis of a Multilayered Open Queueing Network with Population Constraint and Constraint and Constant Service Times (사용자수 제한을 갖는 개방형 다중계층구조의 대기행렬 네트워크 분석에 관한 연구)

  • Lee, Yeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.4
    • /
    • pp.111-122
    • /
    • 1999
  • In this paper, we consider a queueing network model. where the population constraint within each subnetwork is controlled by a semaphore queue. The total number of customers that may be present in the subnetwork can not exceed a given value. Each node has a constant service time and the arrival process to the queueing network is an arbitrary distribution. A major characteristics of this model is that the lower layer flow is halted by the state of higher layer. We present some properties that the inter-change of nodes does not make any difference to customer's waiting time in the queueing network under a certain condition. The queueing network can be transformed into a simplified queueing network. A dramatic simplification of the queueing network is shown. It is interesting to see how the simplification developed for sliding window flow control, can be applied to multi-layered queueing network.

  • PDF

EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES ALONG THE RICCI-BOURGUIGNON FLOW

  • Daneshvar, Farzad;Razavi, Asadollah
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1441-1461
    • /
    • 2019
  • In this paper we consider the monotonicity of the lowest constant ${\lambda}_a^b(g)$ under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow such that the equation $$-{\Delta}u+au\;{\log}\;u+bRu={\lambda}_a^b(g)u$$ with ${\int}_{M}u^2dV=1$, has positive solutions, where a and b are two real constants. We also construct various monotonic quantities under the Ricci-Bourguignon flow and the normalized Ricci-Bourguignon flow. Moreover, we prove that a compact steady breather which evolves under the Ricci-Bourguignon flow should be Ricci-flat.

A Transient Performance Simulation of a Smart UAV Turbojet Engine (스마트 무인기용 터보제트 엔진의 천이성능 모사)

  • 공창덕;강명철;기자영;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.257-260
    • /
    • 2003
  • Dynamic simulation program for a smart UAV turbojet engine was developed. The transient simulation program utilized the CMP(Constant Mass flow) method and Euler integration method for integration of excess torque. The transient performance analysis was carried out by increasing from the idle to the maximum rotational speed of the gas generator. To observe engine dynamic behavior, fuel flow was monitored through a step and a ramp increase. When the fuel was increased as a step function the overshoot of the turbine inlet temperature exceeded the limit temperature.

  • PDF

Performance Analysis of a Heat Pump Using Refrigerant Mixtures (II) (혼합냉매를 사용한 열펌프의 성능해석 (II))

  • Kim, M.S.;Kim, T.S.;Won, S.P.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.218-225
    • /
    • 1990
  • Studies on the performance of a heat pump using non-azeotropic refrigerant mixtures are done. In order to estimate the thermodynamic properties for the selected non-azeotropic refrigerant mixtures including R22/R152a, R22/R142b, R22/R114 and R13B1/R152a, Peng-Robinson equation of state is adopted. The pressure-enthalpy diagram and the temperature-entropy diagram are plotted for each refrigerant mixture. Considerations on the capacity modulation for the heat pump system using refrigerant mixtures are taken into. Results show that when the heating load varies, the possibility for the capacity modulation is found in the heat pump system using a compressor with constant volume flow rate. Under a constant heating capacity condition in the heat pump system, the coefficient of performance increases when the refrigerant mixtures are used. The volume flow rate decreases as the mass fraction of lower boiler increases in this case.

  • PDF

Heat transfer of Mixed convection in rectangular space with constant heat flux (일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF

Effect of the Stagnation Temperature on the Normal Shock Wave

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • When the stagnation temperature increases, the specific heat does not remain constant and start to vary with this temperature. The gas is perfect, it's state equation remains always valid, except, it was called by gas calorically imperfect or gas at high temperatures. The purpose of this work is to develop a mathematical model for a normal shock wave normal at high temperature when the stagnation temperature is taken into account, less than the dissociation of the molecules as a generalisation model of perfect for constant heat specific. A study on the error given by the perfect gas model compared to our model is presented in order to find a limit of application of the perfect gas model. The application is for air.

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF