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An Analysis of a Multilayered Open Queueing Network with
Population Constraint and Constant Service Times*

Young Rhee**

a Abstract m—

In this paper, we consider a queueing network model, where the population constraint within each subnetwork
is controlled by a semaphore queue. The total number of customers that may be present in the subnetwork can
not exceed a given value. Each node has a constant service time and the arrival process to the queueing
network is an arbitrary distribution.

A major characteristics of this model is that the lower layer flow is halted by the state of higher layer. We
present some properties that the inter-change of nodes does not make any difference to customer's waiting time
In the dqueueing network under a certain condition. The queueing network can be transformed into a simplified
gueueing network. A dramatic simplification of the queueing network is shown. It is interesting to see how the
simplification developed for sliding window flow control, can be applied to multi-layered queueing network.

1_ Itroduction have traverse several layers of flow controlled

mechanisms before it comes out from the net-

In a typical queueing network, a customer may work. In this paper, we present a model for an-
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alyzing the delays introduced by such multilay-
ered flow mechanism. The number of customers
in each subnetwork is controlled by a semap-
hore queue.

Reiser (6] modeled a computer communication
system consisting of many virtual routes with
end-to-end window flow control, as a closed
multichain queueing network under the assum-—
ption of a loss system. Pennotti and Schwartz
[4] and Schwartz [9] analyzed a virtual route as
a closed tandem queueing network under the
same assumption. Reiser [5] observed that in a
real situations, packets that arrives to find a full
window are not lost, but are queued in an input
queue. Reiser [5] and Thomasian and Bay {11],
use a flow equivalent server technique to model
the sliding window link as a single server queue
with state dependent service rate. In this app-
roach, the effect of delays due to all sequence
numbers in use is accounted for in the delivery
service time of the equivalent server. Varghee,
Chou and Nilsson [12] and Gihr and Kuehn [2],
presented a similar approach to the above, Varg-
hee, Chou and Nilsson [12] analvzed an open
queueing network without an acknowledgment
delay using the approximation method. Gihr and
Kuehn [2] obtained the characteristics of the
physical transmission process using hierarchical
decomposition and aggregation methods. Recently,
Rhee and Perros [7] modeled an open tandem
queueing network with population constraint and
constant service times. The total number of
customers that may be presented in the network
can not exceed a given value 4. Customers
arriving at the queueing network when there are
more than % customers are forced to wait in an
external queue. The arrival process to the

queueing network is assumed to be arbitrary.

For an analysis of multi-layered communica—
tion network, the communication functions are
partitioned into a vertical set of layers. Each
laver performs a related subset of the functions
required to communicate with another system. It
relies on the next lower layver to perform more
primitive functions and to conceal the details of
those functions. It provides services to next higher
layer. Mitchell and Lide [3] presented a general
framework to model sliding window flow control
from the closed queueing network models. Fdida,
Perros and Wilk [1] presented a methodology for
analyzing nested and tandem configurations of
sliding window controlled networks. Each layer
of sliding window control is reduced to a state
dependent infinite server queue without acknow-
ledgment using a flow—equivalence methodology.
A single-hop OSI structured network with mul-
tiple layers of sliding window flow control and
packet fragmentation between layers is analyzed
by Shapiro and Perros [10]. They presented a
hierarchical method to analyze nested shding
window flow controlled lavers. Each layer with
sliding window control is reduced to a single
queue with state dependent service rate.

In this paper, we present a multilayered open
tandem queueing network controlled by sema-
phore queue. This type of queueing networks
have application in diverse area, such as pallet
based production system, computer sharing and
multiprogramming  systems, communication net-
work model and semaphore controlled software
in an operating system. A major characteristic
of this model is that the lower layer flow is
halted by the state of higher layer. However, we
focus on the behavior of the queueing network
in terms of customer’s waiting time. We present

some properties that the inter-change of nodes



does not make any difference to customer’s
waiting time in the queueing network under a
certain condition. This paper is a sequel to
earlier two papers by Rhee and Perros [7.8].

This paper is organized as followed : Section
2 presents the model for a two-laver queueing
network with semaphore queue. In section 3, some
characteristics of a semaphore controlled queueing
network properties of inter-change among nodes,
is presented to analvze the customer’'s waiting
time. In section 4, we consider a population
constrained queueing network with more than
two-laver. Finally, the conclusion is presented at
section 5.

We note that throughout this paper, we in-
terpret the waiting time of a customer as the
total time a customer spends queueing up in the
queueing network, rather than the total time it
takes to traverse the queueing network which

also includes service times.

2. A model for two-layer
queueing network

Let us consider for a moment a queueing net-
work with population constraint and constant
service times [7]. The population constraint of
the queveing network is controlled by a semap-

hore. The semaphore is a mechanism that con-

f-—
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sists of a pool of k& tokens and an external cueuve.
Customers arrive at the external queue. If there
is a token available at the token queue, a customer
takes the token and proceed to the queueing
network. Upon the completion of service the
customer leaves the network and the token is
returned to the external queue. Customers that
arrive at the external queue when the token
queue is empty are forced to wail in the ex
ternal queue. For this queueing network, the
waiting time of a customer remains the same
even though the order of the service times is
rearranged. In view of this, we can represent
the queueing network by simpler two node
queueing network as 1s shown in Rhee and
Perros [7].

Now, let us consider a two-laver open tandem
queueing network with population constraint and
constant service times as shown in [Figure 1].
The population constraint of the queueing net-
work is controlled by a semaphore. For presen-
tation purpose, we shall refer to the outside
window flow control as the high laver or level 2
layer, and to the inside window flow control as
the low layer or level 1 layer.

An arriving customer takes a token from the
high laver token pool P, and enters the high
laver queueing network. The customer holds

this token until it leaves the high laver queueing

Low Layer -——]|

T ~II%)

:ﬁ-»

k ; Tokens

k- Tokens

{Figure 11 A two-layer open tandem queueing network
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network. Customers arrive through external queue
E, on the high layer. The customer proceeds to
the high layer queueing network until the low
laver external queue E;. In order to enter the
low layer queueing network, the customer needs
another token from the low laver token pool P;.
The customer is then subjected to the low layer
window flow control. Upon service completion in
the low laver queueing network, the customer
returns it’s token immediately to the token pool
P, and proceed to the rest of the node in the
high layer queueing network. Again upon service
completion in the high layer queueing network,
the token is returned to the token pool P, in
zero time. Customers that arrive during the time
when the token pool is empty, are forced to
wait in either external queue E; or E; respec-
tively. The first customer in the external queue,
enters the queueing network as soon as a token
is returned to it’s corresponding token pool. The
arrival process to the queueing network is assu-
med to be an arbitrary general distribution with
a rate A.

Let s; be the constant service time at node j
and " layer queueing network. Let s] = max
{s;i=1,...n}, ssy=max{syj=1,...1}, and

st =max{so,j=1+1,...m}. Also, let T\, =

]2131]‘, Ty= 12152; and Ty= /_:ﬁ;lsw. Finally,
let &, and &, be the number of tokens or win-
dow size for the high layer and the low layer
queueing network respectively. We assume that
ko> k. This is because if ks < &y, there is no
waiting customer in the external queue E;.
Hence, the population constraint of the low layer
queueing network can be relaxed. We assume
that & s} < T, for the low layer queueing net-

work. By letting s" = max{s{, sy, sp} and T=

T, + Ty + T, we also assume that kys' < T
for the high layer queueing network see Co-
rrolary 1 and 2 in Rhee and Perros [7].

Although the above described model has only
two layer of population constrained queueing
network, it is of sufficient generality to demon-
strate the method of analysis proposed here. We
focus on the reduction of an arbitrary number of
nodes of window flow control to the simpler
queueing network which represents the same
performance characteristics of the multi-layered
queueing network.

3. Characteristics of a sema-
phore controlled queueing
network

Let us consider the model shown in [Figure
1]. The nodes of the two layer queueing net-
work can be classified into three parts. The
opening nodes of the high laver queueing net-

work until sy, the low layer queueing network

and the rest of nodes in the high layer queueing
network. Using the results of Theorem 1 in
Rhee and Perros [7], each part of the queueing
network can be reduced into two—node queueing
network without losing its performance charac-
teristic, such as customer’s traverse time in the
queueing network. In view of this, we can
represent the queueing network in [Figure 1] by
a simpler six-node queueing network as shown
in [Figure 2].

In [Figure 21, s+, s, and sy represent, T
—sy, Ty — s7, and T — sh, respectively. For
presentation purposes we shall refer to these six
nodes as the first node, the second node, the

third node and so on. The number of parallel
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k, Tokens

o el B

k, Tokens

[Figure 21 A six-node two-layer gueueing network

i

k, Tokens

k> Tokens

[Figure 3] A five-node two-layer queueing network

servers i3 infinite at the second node, the forth
node and the sixth node respectively. There is
no queue on the second node and the sixth node
in the high laver queueing network. Therefore,

the second and sixth node can be merged.

Let s, = sy + 2. We can represent the qu
eueing network in [Figure 2], by the simpler five-
node queueing network as shown in [Figure 3].
A customer’'s waiting time in the five-node
queueing network i1s the same as in the original
queueing network under the study. In the
configuration of [Figure 3], the study of
interactions and interchangeability among the
nodes give us how much we can improve the

simplification of the given queueing network.

Theorem 1. Let us consider the open queue
ing network as shown in [Figure 4]. If we assume
Si+ sy =s;+s and s*= +s]. a customer’s

waiting time in either case is the same.

Proof. For the first & arriving customers in
either case, an arnving customer always finds a
token in the token pool. There is no queue at

the second node. This is bhecause the a custo-

mer'’s inter-departure time from the first node is
always greater than or equal to s* (see in [7]).
Letting a; be the interarrival time between the
i and the (7/—1)¥ customer to the gueueing
network, a customer’s waiting time in the queue—

ing network, w; is
w=max {0, w;, ., +5"—a,} for 2<i<k (D

Let w’ be the ™ arriving customer’'s waiting
time at the node j. For the (£+1)" arriving
customer in case 1, the waiting time at the first

case 1)

*HI@F% ”

k Tokens

case 2)

— IO ZgH -

k Tokens

[Figure 4] The open tandem queueing network

node 1s

Wiw = max{0,wy + s* — ay )} (2)
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llowever, the (k4 1) arriving customer may
wait in the external queue until a token returns
to the token pool P. This 1s because every kY
arriving customer uses the same token. Thus,
the (k+1)" arriving customer will take the first
customer’s token. The waiting time at the ex—
ternal queue, wi,, is the time bhetween the
departure time of the first arriving customer,
and the arrival time of (#+1)" customer to the
external queue E. Since d,=s" +s; + s, and the

arrival time of (£+1)¥ customer to the external
quete is 2 a;+ wh-, +s', the external queue
“

waiting time of (+1)" customer, wj,, 1s

wz‘l:max{o, d — (lflaﬂr wh +s*)}

=

= max{O, st s — ( Sjl a;+ w}‘.-l)} 3)
=
The (k+ 1)* arriving customer’s waiting time
in the queueing network, wg.; 1s equal to
W}eﬂ + Wiy .
In general, the 7 customer’s waiting time in

the network, w; and w; are respectively

wt=max{0, wj_, +s" —a}} @

w; = max{O, a’,-fk—( Z()az + w) +s*)} &)

Now, let us consider the case 2 in [Figure 4].
For the first % arriving customers, a customer’s
waiting time is equal to (1). This is because the
first node has the longest service time. For the

(£+ 1% arriving customer, the waiting time at
the first node is also equal to (2), and the
external queue waiting time is the time di-

fference between the departure time of the first
arriving customer and the arrival time of the

(k+1)%customer to the external queue E. The

departure time of the first arriving customer
is s+ s + s Since sit+s,=s+s, wi., for
the case 2 is exactly same with (3).

For the 7% arriving customer, the customer’s
waiting time in the first node is equal to (4.
And the customer’s wailing time in the external
queue is also equal to (5), since the departure
time of (j— &)™ is the same with the case (1).
We can prove recursively that the customer’s
waiting time in either case is identical. ]

Theorem 2. Let us consider the open queue-
ing network as shown in [Figure 5]. Let assume
si+ s, =5 + sand s*=s]. Then, a customer’s
waiting time in either case is identical

Proof. For the first % arriving customers in
either case, the customer’s waiting in the qu-
eueing network is the same. This is because the

waiting time in the tandem queueing network

case |)
)
ne h TO—
k Tokens
case 2)
||e ﬁ MO
k Tokens

{Figure 5] The open tandem queueing network

with constant service time is decided by the
longest service time. So that, the customer’s
departure time from the queueing network is
identical in either case.

Let us consider the (£+1)" arriving customer.

The customer’'s arrival time to the cueueing

network is 2 a;. The (£+ 1) arriving customer



will use the token returmned by the first cus
tomer. Let 4, be the " customer’s departure
time from the semaphore queueing network.
For the case 1, let w’ be the ;% customer's
waiting time at node J,7=e,1,2,3. Since the
second node has an infinite number of servers,

th

2 . I .
w; =0. Hence the " customer’s waiting time

wis wi+ w + wl Let &) be the interarrival

th

time between (i—1)" and " customer to the

node j. Undoubtedly, @t = a’. The external
queve walting time  wj, is max{0, d, — Ikzt a,}.
The (£+1)* customer's interarrival time to the
first node @i,; can be changed into @, +
wiy1 — wh. The waiting time at the first node,
whiy is max{0, wi+ s} — aj.}. The intera-
rrival time to the second node, aiH depends on
whor. B owh >0, @b =s]. And if wh., =0,
@i = ahy — wh Since the interarrival time o
the third node does not change, the waiting time
at the third node w}, |, is max{0, wi+s —

aiq}.

Wi = max{O, dlfﬁja,} ©6)

whyy = max{0, witsi—ap} (7

whi = max{0, wi+s —ak} (8

So that, w,., can be expressed in terms of wy,
s and a;

For the case 2, let d, be the ™ customer’s
departure time from the semaphore queueing
network. Since there is no waiting time after

the first node, let w! be the ™ customer's
waiting time at first node. The (&+ 1) arriving

customer’s external queue waiting time, wj.,=

An Analysis of a Multilayered Open Queueing Network with - 117

d,— )gal. The relationship between ¢, and
d is di=d +wl. Since wl=0 d =d.
The (£+1)¥ customer's interarrival time to the
first node, ah., has changed into @y, + wis,.
The waiting time at the first node, Whey 18

max{0, wi+s" —api i}

Whey = max{O, dlvi‘fla,-} 9

whe) = max{0, Wit s — ap ) (10
We can verify easily that w.., and wsy,
are identical.

For an arbitrary 7" arriving customer in the

case 1,

wl = max{o, d, ,e—za,-} an
al=a;+w—w_, (12)
w} = max{0, wi_,+ s} — aj} (13)

2__ 1 1
a;=a; — W,

if w'=0, that is, wl | +s]—a)<0 (14
ai=sy il w0 (15)
wi =10 since the second node has infinite servers
di=a!

w!=max{0, w!_ +s —a)} (16)

-th .. . .
The j* customer’'s waiting time w; is

w;, = w;+ w,l+w'}
= max{0, wi_,+w) +w}  +s"—a} (1D
=max{0,w;_+5" —aj}

th

Now, for an arbitrary 7" arriving customer in

the case 2,
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wi = max{(), di v gai} (18)

~

d} = dj+ ?j(\)f‘ Wf 1 (19)

!

w) = max{0, wj. +s" —aj) (20)

The ;™ customer's waiting time ;18

2D

Below we shall show that (17) and (21) are
identical in terms of the customer’'s waiting time.
We assume that w,= w, i=1,2,,,j—1 to

prove w,;= w ;. Therefore

. e 1 3
Wi—p = w,»,k+ w];k+ Wi~
W,y = Wt wi, (22)

~e ~l . e 1 3
w,-..k+ Wi—p = w,-,k+ w],,ﬁ- Wik

The ;* arriving customer will take the token
returned by (j— &)™ customer. So that, the de-
parture time of (;— & ™ customer, d; , or d; ,

is the same with the token returning time to the

token pool.
dip = 2qa;+w ptw
= (24)
di—y = gaﬁ‘ Wit Wi-g

Since the arrival time of the j” customer is
Za,-, the 7 customer may wait in the exter
nal queue until the token arrives. Therefore, the

7* customer’s external queue waiting time is

&
I

max{O, di—y— ,Zja‘] (25)

, 1
= max[O, Wi et Wi p— ii/z;(ﬂ_a,}

w max[(), Q,Ak—ga,}
it pla- X al @

1 3
{0, wi— gt wjpt wiop— l.:72ﬁ+l.a{}

It
3
&
S

I
3
]

From the comparison between (25) and (26),
wi=w{=0 since wi_,=0.1f wi=0, w
should be 0. We can prove w,= w; from (11)
to (21). If ¢> 0, w? should be greater than or
equal to 0. We can easily prove w;= w ; from
(11) to (21) when w¢> 0 and w{=0.

Finally, we shall show that the ;* arriving
customer’s waiting time when w{> 0 and w?
> 0. Using (25) and (26), w{= w? as long as
w! ,=0. So that, w,= w; is obvious from
(11) to (21). Now we consider the case 1 when
w?,k> 0. w'f, &> 0 means that the token re-
turning interval time between (j—£—1)¥ and
(;— B™ customer to the token pool is less than
s*. wl ;> 0 means also w{> w{. The (Gj—1¥
customer will take the token returmned by the
(j—k—1)* customer. And the ;* customer
will take the token returned by the (G—A)*
customer. So that, the interarrival time between
the (—1)" and the ;* customer to the second
node is less than s*. This fact tells that some
amount of waiting time for the ;* customer
exists at least in the third node. Therefore, we
can prove w;= w; from (11) to (21) when
w> 0 and w{ > 0. Furthermore, w! > 0, wj=0
and w!=0 in the case 1 and w{>0 and
w}=0 in the case 2 can be happened as long
as wh_,=0. [

Further, the queueing network with constant

service gives another theorem as follows.
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Theorem 3. Let us consider the open qu-
eueing network as shown in [Figure 6). For an
arriving customer, if s} < s", then either case 1
or case 2 has the same waiting time in the
queueing network.

case 1)

——JJ]@/;U%HD@

k  Tokens

case 2)

—r:[,?gjaﬂ@m@——

k  Tokens

[Figure 6] Equivalency between the gueueing
networks

Proof. For the first % arriving customers,
obviously a customer’s waiting times in both
case 1 and case 2 are the same. In general, for
the ;7 arriving customer, the customer's wai-
ting time in the queueing network depends on
the (— k)" customer’s departure time from the

queueing network and the (—1)¥ customer
waiting time in the queueing network. For the
j" arriving customer, the (;— A" customer in
case 1 returns its token s] unit time later than

the customer in case 2 when %< /< 2k his is
because no customer ever waits in the second
node in case 2. Sequentially, we can prove that
each arriving customer’'s waiting time in the
queteing network is the same in both cases.
Hence, we may assume that the waiting time
for both cases is the same until the (;—1)¥
customer.

Let us consider the ;* arriving customer for
case 1. The notations are the same as in
previous Theorem 1 and Theorem 2. The cu-

stomer’s waiting time at the first node, ! is
w, = max{0, w). | +s}—a,) (27

The interarrival time to the external queue,
a;, has changed as follows :
st if w0

o

a; =

1 PR
a;,— wj_, if w,=0

The waiting time in the external queue
depends on the departure time of the (j— &) *
customer d;_, and the arrival time of customer
7 to the external queuve. Since d, ,= ga,-+
si+s"+ s+ w; , and the ;% customer’s arrival
time to the external queue is [2 a;+ sy +wh,

we have
wi= max{O, wi s+ s— g+1ai_ w}-}(28)
=7

The interarrival time to the second node also
has changed to @} = a'+ wf— w_,. Therefore,
the customer’s waiting time at the second node,

w; 1s
wi = max{0, w? \+s"—a%} (29)

For case 2, an arriving customer only exper-
lences queueing at the external queue and at the
first node. Hence the external queue waiting

time is
w}’:max{o, Wit s +s— S;la,} (30)
=7

The interarrival time to the first node has
changed to aj=a;+wi— wt ,. The waiting

time in the first node is

w; = max{0, w)_+s"—a}} an
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In case 1, the ;*

customer’'s waiting time is
the sum of (27), (28) and: (29). The ;” cus-
tomer’s waiting time in case 2 is the sum of
(30) and (31). We can express the ;" customer’s
waiting time, w; using w;-.; and w,_, for
both case. Case 1 and case 2 have the same
amount of waiting time when w}ZO in (27).
Without loss of generality, if w} >0 in (27), at
least one of (28) and (29) is positive. This is
because the interarrival time in case 1 to the
external queue is s). If wf> 0 in (28), (30)
becomes positive. So that, a customer’s waiting
time in both cases can be expressed in terms of
wiy, W g s and @ If wj=0 in (28), (29)
should be positive. This is because the in-
terarrival time to the second node becomes

*

si—w? . From (27) and (29), the customer’s
waiting time in case 1 becomes w; |+s —a,
Since (29) is positive, (31) becomes positive.
Thus, the customer’'s waiting time in case 2
becomes w, 1 +s"—a; Therefore, the waiting

time in case 1 is the same as in case 2. ]

4. A population constrained
queueing network with
more than 2-layer.

Let us consider the nested 5 node queueing
network as shown in [Figure 31 If we apply
Theorem 1, 2 and 3 into the nested 5 node
queueing network, we can make a simpler and
an equivalent queueing network as far as cus-

tomer’'s waiting time is concerned.
e When s%) = max{s3, s}, s»}.

1. using Theorem 1, set s} to s& and adjust s,

{0 T[fszl.
2. using Theorem 3, place the semaphore qu-

eueing network in the first place.

e When s} = max{si,s|, s»}.

b

1. using Theorem 3, place the semaphore qu-

eueing network in the first place.

e When s, = max{s3, s1, Sw}-

1. using Theorem 2, set s} to s and adjust
?l to TI—S§2.
2. using Theorem 3, place the semaphore qu-

eueing network in the first place.

k, Tokens

{Figure 7] 3-node two layered queueing network

Since the longest service time is placed at
beginning of the 5 node nested queueing net-
work, there is no queue after the first node.
Therefore, the time that a customer spends in
the level 2 queueing network is only the sum of
the service times. Let s* be the longest service
in the original nested queueing network. Let
5,=1T,—si and s,= To+ Ty. Then, the ori-
ginal nested queueing network can be trans-
formed into simple two layer queueing network
having 3 nodes as shown in [Figure 7.

We know that a customer’s waiting time in
the queueing network depends on the number of
the tokens inside. Since T, and T are already

defined in section 3, we have the following
corrolary.

Corrolary 1. The waiting time of a customer
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in the 3—node queueing network is independent
of the number of tokens %, when ks> T). As
it were, the level 1 semaphore queue has no
influence on the customer’s wailing time in the
queueing network. Therefore, the level 1
semaphore queue can be removed.

Corrolary 2. The waiting time of a customer
in the 3-node queueing network is independent
= T.

of the number of tokens k., when A"
As it were, the level 2 semaphore queue has no
influence on the customer’s waiting time in the
Therefore, the level 2

(queueing  network.

semaphore queue can be removed.

Now, let us consider n-laver open tandem
queueing network with population constraint and
constant service times. Again each laver of the
population is controlled by a semaphore. Using
Theorem 1, 2 and 3 in section 3, it is evident
that in order to be able 1o tackle any number of
multilavers of shding window flow control we
need to be able to construct a simpler queueing
network. The simplification of z-layer queueing
network can be achieved using the following

procedures.

. Place the longest service time in the
lowest laver.

. Construct two—node queueing network in
the lowest laver.

. Adjust the equivalency of the sum of
service times 1n the lowest laver,

. FFor the next laver, place only one node
having the sum of the service times in
the corresponding laver.

. Repeat until the highest laver.

The features of the simplified n-laver queueing

network is similar to two-layer queueing net—

i

Open Queueing Network with -

work as shown in {Figure 7]. Therefore, we can

represent  n-laver queueing  network  having

only x4+ 1 nodes. The simphification process is
specially limited for the constant service times.
Once we obtain the simphlified model. then the
queueing network can he easy to implement and
easy to analvze in terms of customer’'s waiting
time in the queueing network. For the modeling
purpose, we can reduce the network dimen-

sionality of the queueing network.

5. Conclusion

In this paper. we have presented a multilayer
queueing network model. where the population
within each subnetwork is controlled by a sem-
aphore queue. A major characteristic of this
model 1s that the lower laver flow 1s halted by
the state of the higher laver. We present some
characteristics that the inter-change of nodes
does not make any difference to customer’s
waiting time in the queueing network under a
certain condition. This kind of works has not as
vet been studied in the previous research
presented in the published hterature.

It is evident that in order to be able to tackle
any number of multilayers of sliding window
flow control we need to be able to construct a
simpler queueing network, The simplification
the constant

2 and 3. A

dramatic simplification of the queueing network

process 1s specially hmited  for

service times using Theorem 1,

is shown. Once we obtain the simplified model,

then the queueing network can he easy to
implement and easy to analvze in terms of
customer’s wailing time in the queueing net-
work. It 1s interesting to see how the sim-

plification developed for sliding window flow
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control, can be applied to multi-layered queueing

network.
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