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Abstract 

When the stagnation temperature increases, the specific heat does not 
remain constant and start to vary with this temperature. The gas is perfect, 
it ’ s state equation remains always valid, except, it was called by gas 
calorically imperfect or gas at high temperatures. The purpose of this work is 
to develop a mathematical model for a normal shock wave normal at high 
temperature when the stagnation temperature is taken into account, less than 
the dissociation of the molecules as a generalisation model of perfect for 
constant heat specific. A study on the error given by the perfect gas model 
compared to our model is presented in order to find a limit of application of 
the perfect gas model. The application is for air. 

Keys words : Supersonic flow, subsonic flow, high temperature, supersonic 
nozzle, thermodynamics ratios, normal shock wave, entropy, 
relative error, interpolation 

Nomenclature 

A cross-section area. 
a sound velocity. 
CP specific heat at constant pressure. 
H enthalpy. 
M Mach number. 
P static pressure. 
R constant of gas. 
S entropy 
T temperature. 
V gas velocity. 
xP pressure ratio through the shock. 
xT temperature ratio through the shock. 
xρ density ration through the shock. 
ε relative error (%). 
γ specific heats ratio.  
ρ density. 
q mass flow 
bj coefficients of the polynomial CP(T). 
K Number of subdivision of the interval 
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Subscripts 

i point number. 
0 stagnation condition. 
1 upstream condition of the choc 
2 downstream condition of the choc 
* critical condition. 

Introduction 

The study of an ideal gas flow (PG) can be made under the basis of a few 
known cases [1], [2], [4], [7], [8] and [11]. Among these assumptions, the gas 
must be calorically perfect. The specific heats are constant and do not depend on 
temperature, which is not really the case when the temperature increases. 

The purpose of this work is to develop a mathematical model by adding the 
effect of change of CP with temperature, lower than the dissociation threshold of 
molecules, where the gas becomes calorically imperfect and thermally perfect. The 
development of a mathematical flow through the shock is based on the use of 
equations conservation of the mass, quantity of movement and energy, adding the 
state equation of gas perfect. The shock is characterized by the conservation of 
stagnation temperature [2] and [8]. In reference [14], we find, for air, a table 
containing some values CP and γ depending on the temperature in the interval 55 K 
and 3550 K. An interpolation polynomial is made to the values of the table [10] and 
[11] to find an analytical function CP (T) [3], [6], [12] and [13]. The presented 
mathematical relationships are valid in the general case regardless of the form of 
interpolation and substance, but our results are presented by the choice of an 
interpolation by a polynomial of the 9th degree [3], [6], [12] and [13], and 
substance chosen is the air. The comparison is made with the PG model to 
determine a limit for applying this model. 

Mathematical Formulation 

The development is based on the use of conservation equations of the mass, 
quantity of movement and energy including the equation of state gas perfect [1], 
[8] by: 

teconsVρ tan   =                                                                                  (1) 

0      =+ dVVρdP                                                                                  (2) 

0     =+ dVV  dTCP                                                                                  (3) 

TRρP     =                                                                                        (4) 

The speed of sound is given by [3] and [6]: 

TRTγa   )(  2 =                                                                                     (5) 

With [1], [12] and [13] 
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Fig. 1. Normal shock wave illustration in a nozzle 
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The presentation scheme of a normal shock wave is illustrated in Fig. 1: 
The thickness of the shock wave is very small [8], so that one sees it as a 
mathematical discontinuity. The flow on both sides of the shock is isentropic. 

The integration of equations (1), (2) and (3) between the upstream and 
downstream state of the shock gives respectively: 

q

)

VρVρ       2211 ==                                                                             (8) 

( 0           1212 =−+− VVqPP                                                                      (9) 

( ) ( ) ( ) 0      2  2 2
2

2
121 =−−− VVT HT H                                                         (10) 

Where [3] and [6] 

( ) ( )∫= 0     T
T dTTCTH P                                                                   (11) 

You can get an expression for V1+V2 and V1-V2 from (8) and (9) respectively. 
The replacement of their product in (10) then the elimination of pressure using the 
equation (4) and rearrangement gives the following result: 

( ) ( )
0  1 1
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212 =−+−
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− ⎟
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⎞

⎜
⎝
⎛

ρTρT xx
TR

 T H T H
x x                                                 (12) 

According to (8), it gives V2 = ρ1 V1 / ρ2 and q = ρ1 V1. Replace those quantities 
in (9) and write an expression for P1-P2. By division the result by P1 and write an 
expression for V and then eliminate P2

1 1 and P2 by using the relation (4) and then 

using the relation (5) by replacing the term RT1 versus a1 and γ(T1) and introduce 
the number of Mach M1, one obtain after rearrangement, the following expression: 

( )[ ] ( )1 12
112

1
2 =++− T γM  xT γMx x T ρρ 0                                                       (13) 

The equations (12) and (13) constitute a system of nonlinear equations with two 
unknowns T2 and  xρ.  
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Calculation procedure 

The interpolation constants (bj, j = 1, 2,…, 10) of the function CP (T) are 
shown in [3] and [6]. The function H(T) is presented in [3] and [6]. 

The state generator is given by (M　0, T=T0) (ambient air or combustion 
chamber). 

The integration of the relationship (3) between the stagnation state and 
respectively between critical condition given by (M = 1, T*), and the upstream 
state before the shock given by (M1, T1) and introduce the number of Mach M1, we 
get the following equation [3]: 

( ) ( )2 22 =− iii T  aMT H 0            i= *, 1                                                     (14) 

The determination of T* and T1 from (14) respectively when i =*  and i = 1 is 
using the algorithm dichotomy [5] and [9]. The ratio T* / T0 and T1/T0 
corresponding to  T0 and M1 can be determined as a result.  

The report 101 /ρρ  can be calculated using the following relationship when i = 

1, presented in [3], [12], [6] and [13], using the Simpson formulae [5] with 
condensation of nodes [3] by: 

( ) ⎟
⎠
⎞⎜

⎝
⎛ − ∫= 0

0

T
Tii

i   dTTF Exp
ρ
ρ  ρ        i= 1, 2                                               (15) 

with 

( ) ( )
( )Ta
TCTF P

2
=ρ                                                                   (16) 

The isentropic pressure ratio upstream of the shock can be determined by the 
relationship (17) when i = 1. 
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i       i=1, 2                                                            (17) 

Given that xT> 0 (just above the unit), form (12) shows that one of the solutions of 
xρ is negative and the other is positive. While in the equation (13), the two 
solutions of xρ are positive. To find directly the solution, making the difference 
between (12) and (13), we get: 

( )[ ]
( ) ( ) ([ )]12

1121

12
11

  22

 1  
 

TMxTRTHTH

TMTR
 x

T γ

γ
ρ

+++−

+
=

0

                                                        (18) 

The solution given by (18) is the one accepted by the physical phenomenon 
through the shock. If we replace the expression xρ given by (18) in (13), we get a 
non-linear algebraic equation with one unknown T2, appointed by: 

( )2 =TF                                                                                 (19) 

At this stage, we know only that T2>T1. To give an increase in temperature T2, 
consider the discriminate of the equation (13). Then: 
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( )[ ] ( 12
1

2
12

1 41 T γ M xT γMΔ T−+= )                                                           (20) 

To get a solution it must Δ> 0. So  with: MaxTT <2

( )[ ]
( ) 1

12
1

2
12
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1
T

T γ M

T γM
TMax

+
=                                                                    (21) 

The relationship (21) shows that TMax> T1. So, MaxTTT << 21 . The obtaining the root 

of F(T2)=0 is made by using the dichotomy algorithm [5] and [9]. 
The value of F(T1)=0, means that it is no shock. It can demonstrate that F 

(TMax)> 0, whatever the values of M1 and T0. One calculating the value of F(TM), 
with TM=(T1 + TMax) / 2, mid-range of  [T1, TMax ]. If F(TM)> 0, the solution lies 
in [T1, TM ], and if F(TM)<0, the solution lies in the[TM, TMax ]. This procedure will 
be repeated until K satisfy both the accuracy ε desired. It can show [3] and [6] 
that if ε=10-3, regardless of M1 and T0, the number of iteration K can not exceed 
66. The report xρ can be measured by the ratio (18). Once the value of T2 is found 
with a desired precision ε can be easily inferred the ratio of temperature xT across 
the shock. 

Fig. 2 illustrates the field of existence of the solution T2 in the interval [T1, 
TMax ] depending on the stagnation temperature T0 for the Mach number upstream 
M1 = 2.00 presented by the case (a) of the figure 2 and the number of M1=6.00 
(extreme supersonic), presented by the case (b) of the Fig. 2. The physical 
solution still exists. 
The Mach number M2 downstream the shock can be determined using the following 
relationship [3], [6]. 

( )
( )2

2
2

2
Ta

TH
  M =                                                                              (22) 

The isentropic pressure ratio after the shock may be determined by the 
relationship (17) when i=2. 
The static and total pressure ratio and the density ratio through the shock may be 
determined by: 
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Fig. 2. Interval existence of the solution T2 versus T0. (a) when M1 = 2.00. (b) when M1 = 6.00 

TP xxx    ρ=                                                                               (23) 
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==                                                                         (24) 

The isentropic ratio 202 /ρρ after the shock can be calculated by the relationship 

(15) when i = 2. 
The variation of the entropy through the shock for the perfect gas is given by [1], 
[2], [3] and [4]: 

( )
ρ

dρ
R

T
dT RCdS P        −−=                                                                      (25) 

Replacing the polynomial CP (T) in relation (25) one obtained after integration 
between states 1 and 2, the following form: 

( ) ( ) ( ) (∑
=

=

−− −
−

+−−=
10

2

1
1

1
2112  

1
  

j

j

jjj
T TT

j
b

xR LogxLogRbS ρ )                                           (26) 

Considering the function CP(T) is constant when  TT ≤ , K 240=T , 
K) (kg / J  289.1001=PC  [3], then the function S12(T1,T2)  took the corrected following: 

 If  T  T ≤2     then   ( ) ( ) ( ρxR Logx LogRCS TP −−=12 )  
If T  T ≥1     then  S12=relation (26) 
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To make comparison with the PG model, these relations through a shock wave are 
presented in [1], [2] and [4]. 

The stagnation parameters corresponding to subsonic conditions after the 
shock can be determined: 

The Mach number and the speed of sound are always equal to zero. Then: 

002010 === MMM                                                                           (27) 

002010 === VVV                                                                             (28) 

Now consider the change in the total temperature corresponding to the regions 
before and after the shock when the specific heat CP (T) varies with temperature. 
Know that for the model GP, the total temperature through the shock remains 
constant [1]. 

One can write the relationship (3) in three forms. 
The first form is between the total state total and the state just before the shock. 
The second relationship is between the total state total after the shock and the 
state immediately after the impact. The third relationship is between the state just 
before and after the shock. Yields respectively: 

( )∫= 102
1

1
   2 V T

T
dTTCP                                                                         (29) 

( )∫= 202
2

2
   2 V T

T
dTTCP                                                                        (30) 

( ) ( )∫=− 12
1

2
2

2
   2 VV T

T
dTTCP                                                                    (31) 

Let the difference between the relations (29) and (30) and compare the result with 
the relationship (31), we get: 

( ) ( ) ( )

( ) ( ) ( )∫∫∫
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11020
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dTTCdTTCdTTC

PPP
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After simplification one found 

( ) 0   10

20
=∫

T
T

dTTCP                                                                         (33) 

This gives that 

01020 TTT ==                                                                               (34) 
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Hence it was confirmed that the total temperature through the shock remains 
constant for the model HT. Then, the phenomenon of shock is through conservation 
of the total temperature. 

One can say that the isentropic flow that was subsonic or supersonic is done 
with the conservation of entropy which provides that such flow is done with 
conservation of the total pressure. 
Hence, the total speed of sound remains constant on both sides of the shock. By 
using relations (5), (7) and (34), we get: 

0001020   )( TRTaaa γ===                                                         (35) 

With γ(T) is given by the relationship (7). 
The total stagnation pressure and density may be determined by the relationship (24). 
The relationship (26) is given depending on conditions across the shock. We can 
demonstrate from the relationship (25) that the integration between the conditions 
total before and after the shock gives: 

⎟
⎟
⎠

⎞
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−=⎟

⎟
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20
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20
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P

P
R LogR LogS

ρ

ρ
                                                      (36) 

Error of Perfect Gas Model 

The mathematically perfect gas model is developed on the basis to regarding 
the specific heat CP and ratio γ as constants, which gives acceptable results for 
low temperature. According to this study, we can notice a difference on the given 
results between the perfect gas model and the model developed here. The error 
given by the PG model compared to our HT model can be calculated for each 
parameter. For each value (T0, M) the error ε can be evaluated by the following 
relationship: 

( ) ( )
( )

100    
,
,

1 ,
0

0
0 x

MTy
MTy

MTy
HT

PG−=ε                                                         (71) 

Resultats et commentaires 

Fig. 3 to 9 show the thermodynamic ratio through the shock for T0= 1000 K, 
2000 K and 3000 K including the graph for the PG model for γ=1,402. 
There is clearly the effect of temperature T0 on the obtained results. We can 
conclude that for low-temperature, the perfect gas gives very good results closer 
to those of HT model. This case is until T0 = 1000 K and M1 = 2.00 if one accepts 
an accuracy of 5%. 

On the Fig.3 of the temperatures ratio across the shock, we note that the PG 
model, gives superior results compared to the results given by the HT model, 
whatever the temperature T0. We can see it on the case (b) of the Fig. 4, which 
means that the model of ideal gas provides a safety margin to the design of the 
structure that was for internal or external aerodynamics. 
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Fig. 3. Evolution of the ration T2/T1 (a) : versus M1. (b) : versus T0 when M1=3.00 
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Fig. 4. Evolution of the ratioρ2/ρ1 ( ersus M1. (b) : versus T0 for M1=3.00 a) : v



                                                                                  Toufik Zebbiche 
 

10 

1 2 3 4 5 6

5
10
15
20
25
30
35
40
45

(a)

 

0 1000 2000 3000 400010.1

10.2

10.3

10.4

10.5

(b)

       

Fig. 5.  Evolution of the ratio P /P  (a) : versus M . (b) : versus T  when M =3.00 2 1 1 0 1

1 2 3 4 5 60.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a)

          
0 1000 2000 3000 40000.44

0.45

0.46

0.47

0.48

0.49

(b)
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Fig. 7. Evolution of the entropy 　S12/R (a) : versus M1. (b) : versus T0 for M1=3.00 
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Fig. 8. Evolution of 1020 /PP  (a) : versus M1. (b) : versus T0 when M1=3.00 

In the Fig. 6, we notice that the Mach number M2 just after the shock given by the 
PG model is higher than the value given by the HT model whatever the temperature 
T0, which means that if we calculate the speed V2, The PG model accelerates the 
gas compared to the real case. 
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or γ 

first. In this case, 
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The relations presented on  be used to study the effect of 
stagnation temperature on the flow in a supersonic nozzle when a shock wave will 
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