• Title/Summary/Keyword: A Single System Design

Search Result 2,207, Processing Time 0.03 seconds

A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging

  • Hernandez, Daniel;Kim, Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.95-122
    • /
    • 2020
  • In this article, we evaluated the performance of radiofrequency (RF) coils in terms of the signal-to-noise ratio (S/N) and homogeneity of magnetic resonance images when used for ultrahigh-frequency (UHF) 7T magnetic resonance imaging (MRI). High-quality MRI can be obtained when these two basic requirements are met. However, because of the dielectric effect, 7T magnetic resonance imaging still produces essentially a non-uniform magnetic flux (|B1|) density distribution. In general, heterogeneous and homogeneous RF coils may be designed using electromagnetic (EM) modeling. Heterogeneous coils, which are surface coils, are used in consideration of scalability in the |B1| region with a high S/N as multichannel loop coils rather than selecting a single loop. Loop coils are considered state of the art for their simplicity yet effective |B1|-field distribution and intensity. In addition, combining multiple loop coils allows phase arrays (PA). PA coils have gained great interest for use in receiving signals because of parallel imaging (PI) techniques, such as sensitivity encoding (SENSE) and generalized autocalibrating partial parallel acquisition (GRAPPA), which drastically reduce the acquisition time. With the introduction of a parallel transmit coil (pTx) system, a form of transceiver loop arrays has also been proposed. In this article, we discussed the applications and proposed designs of loop coils. RF homogeneous coils for volume imaging include Alderman-Grant resonators, birdcage coils, saddle coils, traveling wave coils, transmission line arrays, composite right-/left-handed arrays, and fusion coils. In this article, we also discussed the basic operation, design, and applications of these coils.

A VLSI Architecture for the Real-Time 2-D Digital Signal Processing (실시간 2차원 디지털 신호처리를 위한 VLSI 구조)

  • 권희훈
    • Information and Communications Magazine
    • /
    • v.9 no.9
    • /
    • pp.72-85
    • /
    • 1992
  • The throughput requirement for many digital signal processing is such that multiple processing units are essential for real-time implementation. Advances in VLSI technology make it feasible to design and implement computer systems consisting of a large number of function units. The research on a very high throughput VLSI architecture for digital signal processing applications requires the development of an algorithm, decomposition scheme which can minimize data communication requirements as well as minimize computational complexity. The objectives of the research are to investigate computationally efficient algorithms for solution of the class of problems which can be modeled as DLSI systems or adaptive system, and develop VLSI architectures and associated multiprocessor systems which can be used to implement these algorithms in real-time. A new VLSI architecture for real-time 2-D digital signal processing applications is proposed in this research. This VLSI architecture extends the concept of having a single processing units in a chip. Because this VLSI architecture has the advantage that the complexity and the number of computations per input does not increase as the size of the input data in increased, it can process very large 2-D date in near real-time.

  • PDF

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

Road Environment Black Ice Detection Limits Using a Single LIDAR Sensor (단일 라이다 센서를 이용한 도로환경 블랙아이스 검출 한계)

  • Sung-Tae Kim;Won-Hyuck Choi;Je-Hong Park;Seok-Min Hong;Yeong-Geun Lim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.865-870
    • /
    • 2023
  • Recently, accidents caused by black ice, a road freezing phenomenon caused by natural power, are increasing. Black ice is difficult to identify directly with the human eye and is more likely to misunderstand it as standing water, so there is a high accident rate caused by car sliding. To solve this problem, this paper presents a method of detecting black ice centered on LiDAR sensors. With a small, inexpensive, and high-accuracy light detection and ranging (LiDAR) sensor, the temperature and inclination angle are set differently to detect black ice and asphalt by setting different reflection angles of asphalt and black ice differently in temperatures and inclinations. The LIDARO carried out in the study points out that additional research and improvement are needed to increase accuracy, and through this, more reliable black ice detection methods can be suggested. This method suggests a method of detecting black ice through early system design research by preventing accidents caused by black ice in advance.

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Programmable Memory BIST for Embedded Memory (내장 메모리를 위한 프로그램 가능한 자체 테스트)

  • Hong, Won-Gi;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.61-70
    • /
    • 2007
  • The density of Memory has been increased by great challenge for memory technology. Therefore, elements of memory become more smaller than before and the sensitivity to faults increases. As a result of these changes, memory testing becomes more complex. In addition, as the number of storage elements per chip increases, the test cost becomes more remarkable as the cost per transistor drops. Recent development in system-on-chip (SOC) technology makes it possible to incorporate large embedded memories into a chip. However, it also complicates the test process, since usually the embedded memories cannot be controlled from the external environment. Proposed design doesn't need controls from outside environment, because it integrates into memory. In general, there are a variety of memory modules in SOC, and it is not possible to test all of them with a single algorithm. Thus, the proposed scheme supports the various memory testing process. Moreover, it is able to At-Speed test in a memory module. consequently, the proposed is more efficient in terms of test cost and test data to be applied.

Implementation and Performance Analysis of PLC Scheme based on SISO/MIMO-OFDM using MRC (최대비 합성법을 이용한 SISO/MIMO-OFDM 기반 전력선 통신 방식 구현 및 성능분석)

  • Yoo, Jeong-Hwa;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.176-183
    • /
    • 2011
  • In this paper, we propose the implementation and performance analysis of power line communication based on SISO/MIMO-OFDM which focuses on high speed data transmission in smart grid and future power line grid. We employ Zimmermann frequency model and Middleton Class A model as the multipath power line fading channel and impulse noise channel, respectively. In this paper, in order to improve the three-phase or single-phase PLC performance, we introduce a new MRC (called a&f-MRC) which effectively sums up multiple antenna diversity gain and multipath fading diversity gain. Via simulation, we prove the performance advantage over existing SISO/MIMO systems. In addition, we offer the tradeoff on system design through comparing with MRC, EGC and SC.

Localized Surface Plasmon Resonance (LSPR) Biosensors on Metal Nanoparticles with the Design of Bioreceptors

  • Kim, Min-Gon;Park, Jin-Ho;Byun, Ju-Young;Shin, Yong-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.126-126
    • /
    • 2014
  • Label-free biomolecular assay based localized surface plasmon resonance (LSPR) of noble metal nanoparticles enables simple and rapid detection with the use of simple equipment. Nanosized metal nanoparticles exhibit a strong absorption band when the incident light frequency is resonant with the collective oscillation of the electrons, which is known as the LSPR. Here we demonstrate localized surface plasmon resonance (LSPR) substrates such as plasmonic Au nanodisks fabricated by a nanoimprinting process and gold nanorod-immobilized surfaces and their applications to highly sensitive and/or label-free biosensing. To increase detection sensitivity various bioreceptors weree designed. A single chain variable fragment (scFv) was used as a receptor to bind C-reactive protein (CRP). The results of this effort showed that CRP in human serum could be quantitatively detected lower than 1 ng/ml. Aptamers, which were immobilized on gold nanorods, were used to detect mycotoxins. The specific binding of ochratoxin A (OTA) to the aptamer was monitored by the longitudinal wavelength shift of LSPR peak in the UV-Vis spectra resulting from the changes of local refractive index near the GNR surface induced by accumulation of OTA and G-quadruplex structure formation of the aptamer. According to our results, OTA could be quantitatively detected lower than 1 nM level. Additionally, aptamer-functionalized GNR substrate was quite robust and can be regenerated many times by rinsing at 70 OC to remove bound target. During seven times of washing steps, the developed OTA sensing system could be reusable. Moreover, the proposed biosensor exhibited selectivity over other mycotoxins with an excellent recovery for detection in grinded corn samples, suggesting that the proposed LSPR based aptasensor plays an important role in label-free detection of mycotoxins.

  • PDF

New Proxy Blind Signcryption Scheme for Secure Multiple Digital Messages Transmission Based on Elliptic Curve Cryptography

  • Su, Pin-Chang;Tsai, Chien-Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5537-5555
    • /
    • 2017
  • Having the characteristics of unlinkability, anonymity, and unforgeability, blind signatures are widely used for privacy-related applications such as electronic cash, electronic voting and electronic auction systems where to maintain the anonymity of the participants. Among these applications, the blinded message is needed for a certain purpose by which users delegate signing operation and communicate with each other in a trusted manner. This application leads to the need of proxy blind signature schemes. Proxy blind signature is an important type of cryptographic primitive to realize the properties of both blind signature and proxy signature. Over the past years, many proxy blind signature algorithms have been adopted to fulfill such task based on the discrete logarithm problem (DLP) and the elliptic curve discrete log problem (ECDLP), and most of the existing studies mainly aim to provide effective models to satisfy the security requirements concerning a single blinded message. Unlike many previous works, the proposed scheme applies the signcryption paradigm to the proxy blind signature technology for handling multiple blinded messages at a time based on elliptic curve cryptography (ECC). This innovative method thus has a higher level of security to achieve the security goals of both blind signature and proxy signature. Moreover, the evaluation results show that this proposed protocol is more efficient, consuming low communication overhead while increasing the volume of digital messages compared to the performance from other solutions. Due to these features, this design is able to be implemented in small low-power intelligent devices and very suitable and easily adoptable for e-system applications in pervasive mobile computing environment.