• Title/Summary/Keyword: A Single System Design

Search Result 2,206, Processing Time 0.033 seconds

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Design and Implementation of Variable-Rate QPSK Demodulator from Data Flow Representation

  • Lee, Seung-Jun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • This paper describes the design of a variable rate QPSK demodulator for digital satellite TV system. This true variable-rate demodulator employs a unique architecture to realize an all digital synchronization and detection algorithm. Data-flow based design approach enabled a seamless transition from high level design optimization to physical layout. The demodulator has been integrated with Viterbi decoder, de-interleaver, and Ree-Solomon decoder to make a single chip Digital Video Broadcast (DVB) receiver. The receiver IC has been fabricated with a 0.5mm CMOS TLM process and proved fully functional in a real-world set-up.

  • PDF

Multi-communication layered HPL model and its application to GPU clusters

  • Kim, Young Woo;Oh, Myeong-Hoon;Park, Chan Yeol
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.524-537
    • /
    • 2021
  • High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.

A Study on Tool Design of Deep Drawing Using Personal Computer (PC에 의한 디이프 드로잉 금형설계의 자동화에 관한 연구)

  • Choi, Jae-Chan;Kim, Byung-Min;Huh, Man-Jo;Kim, Seong-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 1990
  • This paper describes a computer aided tool design system of deep drawing of cylindrical cups with or without flange by press. An approach to system is based on knowledge based system. The computer program has written in basic language with personal computer Knowledges for tool design are formulated from the plasticity theory, handbooks, experimental results and empirical knowhow of the field experts. The capabilities of developed system include 1) the selection of tool structure (with or without blank holder, single or double action, lift up or draw off type), 2) the design of tool elements(punch/holder, die/holder etc.) for the previous selected tool structure by the process planning output and the production quantity. The final output is generated in graphics form for design sheet.

  • PDF

Development of Internet-Based Propeller Design System (인터넷 기반 프로펠러 설계 시스템 개발)

  • 이왕수;박범진;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.69-79
    • /
    • 2003
  • Existing large-scale complex programs usually reside In a single computer, and the user has to be physically in contact with the computer. With the wide spread use of the internet, the need to carry out the design and analysis tasks geographically away from the main computer is increasing. In this paper existing Windows-based propeller design and analysis package is separated into the server-client modules and the protocol program is developed to implement the communication between multi-client computers and a single server computer. A new protocol packet is designed to use the Windows socket and the server/client programs control the receive/send operations using the information transmitted in the packet. Test runs show that the remote user, connected to the server computer through the internet only, can perform the required tasks.

Design and Implementation of Clusters with Single Process Space (단일 프로세스 공간을 제공하는 클러스터 시스템의 설계 및 구현)

  • Park, Min;Lee, Daewoo;Park, Dong-Gun;JungLok yu;Maeng, Seung-Ryoul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.16-18
    • /
    • 2004
  • Single system image(SSI) have been the mainstay high-performance computing for many years. SSI requires the integration and aggregation of all types of resources in a cluster to present a single interface to users. In this paper, we describe a cluster computing architecture with the concept of single process space(SPS) where all processes share a uniform process identification scheme. With SPS, a process on any node can create child process on the same or different node or communicate with any other process on a remote node, as if they are on a single node. For this purpose, SPS is built with the support of unique cluster-wide pid, signal forwarding, and remote fork. We propose a novel design of SPS cluster which addresses the scalability and flexibility problem of traditional clusterwidely unique pid implementation by using blocked pid assignment. We have implemented this new design of SPS cluster, and we demonstrate its performance by comparing it to Beowulf distributed process space. Benchmark performance results show that our design of SPS cluster realized both scalability and flexibility that are essential to building SPS cluster.

  • PDF

Effect of Joint Reformation on Adhesive Strength of 6061 Aluminum Alloy to Polycarbonate Lap Structures

  • D. W. Seo;Kim, H. J.;J. K. Lim
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • Adhesive-bonded joints are widely used in the industry. Recently, applications of adhesive bonding joints have been increased extensively in automobile and aircraft industry. The strength of adhesive joints is influenced by the surface roughness, adhesive shape, stress distribution, and etc. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, as the fundamental research of adhesive bonding joints, the effects of adhesive shape and loading speed on bonding strength properties and durability of aluminum to polycarbonate single-lap joints were studied. To evaluate the effect of adhesive shape, several modified shapes were used, and loading speeds were varied from 0.05 to 5mm/min. As a result, the load distribution showed a brittle fracture tendency. The trigonal edged single lap and bevelled lap joints showed the higher strength than the plain single lap, trigonal single lap, joggle lap and double lap joints in same adhesive area. The fractures of trigonal single lap and trigonal edged single lap joints that had the higher strength level were shown as the mixture type of the cohesive and interfacial-failure, mostly joggle lap joints that had the lower strength level were shown as the adhesive-failure.

  • PDF

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.

Structural and dynamic views of the CRISPR-Cas system at the single-molecule level

  • Lee, Seung Hwan;Bae, Sangsu
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.201-207
    • /
    • 2016
  • The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations.