He TzhA 32

te

Nio
ol

3

SAH AIARY &) % P8

B0 HE2 SES Wl
SIOE)|IE® FXTLEY MUHIT
{mchoio, dwlee, dgpark, jlyu, maeng}@camars.kaist.ac.kr

Design and Implementation of Clusters with Single Process Space

Min Choi’ DaeWoo Lee, DongGun Park, Junglok Yu, SeungRyoul Maeng
Division of Computer Science, Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology

8 o

Single system image(SSl) have been the mainstay of high-performance computing for many years. SSI
requires the integration and aggregation of all types of resources in a cluster to present a single interface to
users. In this paper, we describe a cluster computing architecture with the concept of single process
space(SPS) where all processes share a uniform process identification scheme. With SPS, a process on any
node can create child process on the same or different node or communicate with any other process on a
remote node, as if they are on a single node. For this purpose, SPS is built with the support of unique
cluster-wide pid, signal forwarding, and remote fork. We propose a novel design of SPS cluster which
addresses the scalability and flexibility problem of traditional clusterwidely unique pid implmentation by
using blocked pid assignment. We have implemented this new design of SPS cluster, and we demonstrate its
performance by comparing it to Beowulf distributed process space. Benchmark performance results show that
our design of SPS cluster realized both scalability and flexibility that are essential to building SPS cluster.

1. Introduction

Recently, the rapid progress of network and microprocessor
technolegies has made cluster computing systems an attractive
alternative to massively parallel machines [1]. Workstation clusters can
share computing resources more easily, and node capability can easily
be increased by adding commodity hardware. For this reason, the usage
of cluster systems is becoming increasingly widespread. In fact, 93 of
the top 500 supercomputer sites are applications of a cluster system [2].
The increasing popularity requires the cluster systems with better
utilization in terms of convenience, performance, scalability, and
reliability. Thus, we have to provide a single system image(SSI) view of
a cluster to users or administrators.

SSI enables a cluster of PCs or workstations to be used as a single
computing unit in an efficient and scalable manner [3]. SSI illusion can
be realized in a way as provision of a single process space(SPS). SPS
makes a process on any node be able to create child process on the same
or different node or communicate with any other process on a remote
node, as if they are on a single node. In addition, SPS allows all the
processes in the cluster to share an uniform process identification
scheme. Thus, a process in the cluster can access all the other processes
cluster-wide, using a single namespace. For this purpose, SPS is built
with the support of unique cluster-wide pid, signal forwarding.

Several approaches are introduced to provide these functionalities,
but they have some problems. In Bproc [4], unique cluster-wide pid
does not have scalable performance to fork-intensive programs, and the
process migration is not able to move a process with socket. In
Opensource SSI Cluster {5], the partitioning of unique pid is not flexible
to an application with a variant amount of pid usage. In this paper, we
propose a novel design of SPS cluster which addresses the scalability
and flexibility problem by using blocked pid allocation. In the blocked

1) This research is supported by National Research Laboratory Grant 4-20.

16

pid allocation, a whole pid space is broken up into pieces and the broken
pid blocks, not an each pid, are assigned to client nodes. Therefore, the
communication overhead for requirement of a new pid is significantly
reduced.

The rest of the paper is organized as follows. Section 2 briefly
describes some proposed solutions to the prblem of SPS design. Section
3 presents the proposed idea in our design. Section 4 describes the
implementation details of our SPS cluster, and Section 5 evaluates the
performance of our SPSsystem. We conclude by summarizing our
results in Section 6.

2. Related Works

BProc [4, 8] is an approach for provision of single process space based
on beowulf cluster, the representative commodity cluster. In Bproc, all
the processes running in a cluster are visible on the master node and are
controllable via existing UNIX process control mechanisms, since the
Bproc adopts the master-slave arcihtecture. With single process space
support, the unique pid of a process should not change when it moves,
but the Bproc cannot guarantee the fact that a locally assigned pid is
globally unique. In order to resolve this problem they make use of pid
masquerading, putting a second pid on processes received from the
master node or newly forked in slaved node. Therefore, some processes
have two pids, local pid and global pid. The operating system runs their
works with the local pid as usual and otherwise the global pid is used to
identify on the master node if a user wants to control processes on
remote nodes. This pid masquerading successfully provides pid
globality without much modification in the operating system. However,
there are some limitations on Bproc's unique pid support. One or more
master nodes manage the entire unique cluster-wide pid space and they
allocate an unique pid to slave nodes on demand, instead of that the
available pid spaces are given to each node initially. The slave node
must contact to server to get a globally unique pid at every fork system

200415 =R B o3ts] B sk F =84 Vol. 31, No. 1

call. This mechanism requres unwanted communication overhead, and
not scalable, especially on fork-intensive programs.

3. Designing Clusters with Single Process Space

In this section, we first describe the new design of SPS cluster and
introducz the blocked pid allocation algorithm as the core mechanism to
build SPS cluster. Second, we propose a novel idea in unique pid
support, what we call blocked pid allocation, and finally, we present a
collection algorithm for collecting block with low utilization.

3.1 Design Objectives

We chose design objectives as follows. First, the main objective is to
design scalable and flexible single process space cluster. For this
purpose, we introduce a new pid allocation scheme, what we call
bliocked pid allocation. When a node sends a request for a pid, the pool
manager replys to the incoming request with a pid block, not inidividual
pid as shown in figure 1. The node received this reply can fork some
processes within block size without permission of pool manager. Even
though the master-slave architecture has been chosen, the blocked pid
allocation makes the individual slave nodes can fork some processes
without master's admission to a certain extent. Thus, the approach
lightens the heavy burden of master node for unique pid allocation,
which results in high scalability. Moreover, the pid spaces allocated to
individual node are adjusted on the event of new node addition. This
offers the uitimate in flexiblity.

60
]

Pid Pool

112713714 (D)

PSR <
00000
AN

<7 <>
00000

Node 4

Node 3

Figure 1 Concept of Blocked PID Allocation

Second, every pids on any node are really unique, not masquerading.
The maintenance of mapping local pid and unique pid is complex and it
requires additional overhead for adjustment of mapping information at
every time a new process is created. The real uniqueness of pid also
helps resolving naming conflict in process migration [9]. When a
process running with pid 351 moves to another node, the process would
need to be assigned a new pid by already existing process with the same
pid. If a process which expects the process to have pid 351 calls
wait(pid), it will be waiting for the wrong process. With the
cluster-widely unique pid, this naming conflict couldnot be problematic,
since the pid allocated once on any node is cluster-widely unique. Third,
starting a process on remote node should not require logging into the
node for convenience. This is similar to Bproc but not exactly the same
in that we assume the shared file system, such as NFS. The rsh and
process migration is used to implement remote execution for tradional
approaci and Bproc, respectively. However, we make use of daecmon
based approach in which the remote execution command are delivered
through the daemons and the daemon who received the message spawns
a child process and execute the requested excutable. Since, there is no
transfer of executable binary with the help of shared file system, we can
inituitively think that the overhead of daemon based approach is much
less than the rsh or process migration.

3.3 Blocked PID Allocation

In blocked pid allocation, the entire pid space is broken up into pieces.
The broken pid blocks are allocated to slave node on demand instead of
a single pid. Figure 4 gives the overall picture of blocked pid look-up,

17

with each step of the process labeled. The process begins by blocked pid
allocation. The master daemon maintains a pid block allocation table
used to record the pid block start number, node number, block usage.
Every slave nodes get an initial PID block on system bootup.

PID space of client pode 1

c. Table

alls
AFID bock aa
Unique PII

PID space of client node 2

1
H
I

|
i
|

LA

]
'
]
i
1
1
)
)
i
|
I
I
'
]
1
|
i
'
t
1
1
1
'

PID Space of Master DMaster dacnon PIED Space of Skave

Figure 2 PID look-up on Blocked PID Allocation

4. Implementation

Our SPS Cluster implementation consists of a combination of kernel
modification and the user level daemons. The in-kernel portions of SPS
Cluster cooporates with user level daemons which follows master -slave
architecture. The role of a node in SPS Cluster is only determined by the
role of user level daemon. All nodes share the same kernel binary image
and there is no need to provide a different configuration for master
node. This approach is desirable to minimize the complexity of the
kernel.

Listener Message-from-Daemon Message-from-Kernel
Thread Receiver Thread Receiver Thread
i] A
} 3
slaved)
. K > slaved
. -] -)
[[
node 3
Kernel Kernel
........... » using TCP
= * = * using system calls node 1 node 2

* using spsd
Figure 3 Single Process Space Architecture

Figure 3 shows our SPS architecture in a 3-node cluster, for example.
TCP is used in daemon-to-daemon communication, and systera calls
and Linux character device are used in daemon-to-kernel
communication. All nodes have a unique integer ID to distinct each
other: master has 1 and slave has an integer larger than 1. When a new
slave participates in this SPS, it gets an unique 1D.

From the system startup, the masterd notifies the slaved an integer
ID and every node gets disjoint pid ranges in which pids are
cluster-widely unique. They can freely use theglobally unique pid in the
preallocated range. Therefore, this scheme shows scalable performance,
since it does not require additional processing, such as communication
with master 10 get permission of use some pid, or checking whether the
new pid is globally unique or not, at every process fork time. Unlike the
Bproc's approach, the available pid spaces are given to each node
initially. This initial allocation of PID space can only be adjusted when
anew node participate in SPS or collection of PID block occur.

SPSD : A character device driver for IPC
The kernel sends a message to a daemon with the simple character
device to communicate with a user level process. SPSD has a fixed-size

2004 & $H=74 27513

¥ s E =53 Vol. 31, No. 1

buffer to store messages received from kernel and it allows MKRT to
read the message. If a MKRT attempts to read 8 message even though
the buffer is empty, the device driver suspends the MKRT thread until
new message is arrived.

Signal Forwarding

kernel must forward signal if there is not a destination process or if it is
for multiple destination processes like a process group. The kernel
writes a2 message on spsd to forward it. The message includes a PID of
the destination process, a signal number; and a capability of the sending
process. Then the MKRT of the slaved is waked up, passes this message
tothe masterd, and is suspended again. The MDRT of this slave of the
masterd forwards it to the node that a PID block which includes a PID
of the destination process is allocated, or to all nodes except this slave
in the case of multipie destination processes. Finally the MDRT of a
slave which receives this forwarded message calls rkill.

Collection

A PID block starvation problem may occur sometimes in the blocked
PID allocation by lowly utilized PID blocks, yet allocated to some other
nodes. Collection of low utilized PID block is able to give solution to
this problem. Every slave damone receiving the collection message
returns lowly utilized PID blocks to the master. A block usage bitmap is
exist to represent the block usage information; A bit of the bitmap
corresponds to a PID. Before returning lowly utilized PID blocks, kernel
sets a flag of process descriptor whose PID is included in the PID block.
This flag indicates the fact that the master should be notified on
termination of the process for block usage bitmap update.

5. Performance Evaluation

In this section we evaluate the performance of the proposed single
process space design. We demonstrate our SPS Cluster's
performance by comparing it to Beowulf distributed process space.
We used 8 Pentium IV 1.8 GHz machines with 512MB RAM. They are
connected by a 100Mbps Fast Ethernet. The implementation of SPS is
conducted by modification of Linux kernel 2.4.2. The master-slave
daemons runs at user-level on each computation node.

Workload Characteristics
In order to evaluate the system performance, we conducted Imbench
{10} microbenchmark.

w0 ' 00
-~ ~ Wh--------mme s
L R .- - wh-----------eman
LR I - L I

3. --------- CEE ! PG e

....... A K I I T IR

3 ® 4]

-l I SR B
%Y e I 1 F Y R
L . S S wf----ccmmssmmam
3 3 S T Y i I
o o
1 » “ w*© “ 100 1 n “ »w [wo

Figure 4 # of processes as function of loops

Figure 4 shows the number of forked processes as a function of the
number of loops in the application. The left graph indicate the number
of forked processes are linearly increases with the number of loops,
while in the right graph the number of newly created processes is
always ? regardless of the number of loops. This means that the former
has processes with long life time and the latter benchmark forks new
processes which have a short life time.

Figure 5 presents the lmbench microbenchmark execution time as
the number of fork system call increases to simulate the case of
fork-intensive application. The top graph indicates that our SPS
implementation tracks performance of bare linux machine closely, with
an observed overhead ranging from 0.2% to 0.6%. The bottom graph
shows that overhead of blocked PID allocation increases slightly on the

case of long life time process, yet it is still reasonable enough to offer
the greatest advantage of blocked PID allocation.

BEBass SBproc BSPS

tima{meec)

HBase @Bproc @SPS

EEREYERE

Figure 5§ Creation of short life time vs. long life time processes
6. Conclusion

We proposed a novel design of SPS cluster which addresses the
scalability and flexibility problem of traditional clustervidely
unique pid impimentation by using blocked pid assignment.
Benchmark performance results show that our design of SPS
cluster realized both scalability and flexibility.

References

[1] R. Brightwell and S. Plimpton. Scalability and performance of a two large linux :lusters,
Journal of Parallel and Distributed Computing, 61, 1546-1569, 2001

[2] M. Choi, J. R. Yu, H. J. Kim, S. R, Maeng, Improving Performance of a Dynamic Load
Balancing System by Using Number of Effective Tasks, IEEE Intemational Confer. nce on
Cluster Computing(CLUSTER), December 01-04, Hong Kong, 2003.

[3] Roy S. C. Ho, K. Hwang, H. Jin, Design and Analysis of Clusters with Single /O Space,
IEEE Intemational Conference on Distributed Computing Systems(ICDCS), Apri! 10-13,
Taipei, Taiwan, 2000.

[4) E. Hendriks, BProc: The Beowulf Distributed Process Space, ACM International
Conf S ing(ICS), June 22-26, New York, USA, 2002
Single System Image Clusters(SSI)

on oup P
B. Walker et al, for
-/openssi orp/index. shun)
[6] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Drusche!, W. Zwaenepoel, and E.
Nahum. Locality-Aware Request Distribution in Cluster- based Network Servers. In
Proceedings of the 8th Conference on Arch al Support for Pr L
and Operating Systems(ASPLOS), San Jose, CA, October. 1998.
{7} S. Osman, D. Subhraven G. Su andJ Nieh, The Design and Implementation o1 Zap: A
System for Mi Comp Envi In Pi ding of USENIX Annual
ical Conft D ber 9-11, Boston, MA, 2002.
[8] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, C. V. Packer,
Beowulf: A Parallel Workstation for Scientific Conputation Proceedings, International
Conference on Parallel Processing(ICPP}, 1995,
{9} S. Osman, D. Subhraveti, G Su andJ Nieh, The Design and Implemematlon of Zap: A
System for Migrating C g En the 5th Symposium on Op g System
Design and Implcmemannn(OSDI), Boston, MA, December 2002.
[10) L. McVoy, C. Staelin, Imbench: Portable Tools for Performance Analysis, USENIX
Annual Technical Conference, San Diego, California, January 1996.

Linux,

guag

18

