• 제목/요약/키워드: A Biomass

Search Result 3,846, Processing Time 0.025 seconds

Studies on the Microbial Population and the Amylase Activity of the Forest Soil (삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구)

  • Lee, Hee-Sun;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 1994
  • Soil condition, total number of bacteria, soil amylase activity and microbial biomass $(CO_2-C)$ were measured at soil of different forest types. And the difference of the allelopathic effect was determined between fresh leaf extract of Quercus acutissima and Pinus rigida to the bacteria isolated from soil of different forest types. 1. Total number of bacteria in Carpinus laxiflora forest soil was 4~7 times larger than that in pinus desiflora forest soil. 2. Soil amylase activity was positively correlated with total number of soil bacteria and soil organic matter content. The amylase activity at F layer was 4~5 times larger than that at H layer, and that at H layer was 2~4 times larger than that at A layer. 3. Seasonal changes of microbial biomass showed a peak in summer, and vertical distribution of microbial biomass decreased with increasing soil depth. The microbial biomass in Pinus densiflora forest soil was larger than that in Quercus serrata forest soil. 4. Fresh leaf extract of Pinus rigida and Quercus acutissima showed an acceleration or inhibition effect on the growth of soil bacteria, and that of !. acutissima inhibited larger number of soil bacterial strains than that of P. rigida. 4.2% and 25% of soil bacterial strains isolated from soil of P. rigida and Q. acutissima forests were inhibited by fresh leaf extract of P. rigida and Q. acutissima, respectively.

  • PDF

Species Composition and Biomass of Intertidal Seaweeds in Chuja Island (추자도 조간대 해조류의 종조성과 생물량)

  • Kim, Myung-Sook;Kim, Mi-Ryang;Chung, Mi-Hee;Kim, Jeong-Ha;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.301-310
    • /
    • 2008
  • The marine benthic algal flora and biomass of Chuja Island, southern coast of Korea, was investigated. The collections of intertidal marine algae were made at two sites, Yecho of Hachujado and Hupo of Sangchujado, from October 2006 to July 2007. A total of 162 species, including 15 green, 47 brown and 100 red algae, were identified in this study. The occurrence of species according to season was abundant during spring to summer and less in autumn. The vertical distribution of intertidal zone in Chujado was characterized by Gloiopeltis spp., Myelophycus simplex, Ishige okamurae, Chondrus ocellatus, Grateloupia elliptica, Hizikia fusiformis and Sargassum spp. The average biomass of macroalgae was measured as 400 g wet wt m$^{-2}$. The dominant species based on the biomass were Sargassum yezoense, S. coreanum and Hizikia fusiformis. ESG II (ecological state group) as an opportunistic species, including sheet form, filamentous form, and coarsely branched form, occurred 85.8% in the intertidal seaweeds. These results provide a baseline for future monitoring studies in the Chuja Island.

Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus

  • Kwon, Deok-Ho;Kim, Saet-Byeol;Park, Jae-Bum;Ha, Suk-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1944-1949
    • /
    • 2020
  • Mutant sugar transporter ScGAL2-N376F was overexpressed in Kluyveromyces marxianus for efficient utilization of xylose, which is one of the main components of cellulosic biomass. K. marxianus ScGal2_N376F, the ScGAL2-N376F-overexpressing strain, exhibited 47.04 g/l of xylose consumption and 26.55 g/l of xylitol production, as compared to the parental strain (24.68 g/l and 7.03 g/l, respectively) when xylose was used as the sole carbon source. When a mixture of glucose and xylose was used as the carbon source, xylose consumption and xylitol production rates were improved by 195% and 360%, respectively, by K. marxianus ScGal2_N376F. Moreover, the glucose consumption rate was improved by 27% as compared to that in the parental strain. Overexpression of both wild-type ScGAL2 and mutant ScGAL2-N376F showed 48% and 52% enhanced sugar consumption and ethanol production rates, respectively, when a mixture of glucose and galactose was used as the carbon source, which is the main component of marine biomass. As shown in this study, ScGAL2-N376F overexpression can be applied for the efficient production of biofuels or biochemicals from cellulosic or marine biomass.

Estimation of Optimal Stocking Rate of Earthworm Populations (지렁이 개체군의 최적 사육밀도 추정)

  • Lee, Ju-Sam;Noh, Jin-Hwan;Park, Sang-Soo;Lee, Hee-Choong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.369-383
    • /
    • 2012
  • This experiment was carried out to investigate the optimal stocking rate of earthworm populations grown under different stocking rates. The stocking rate in terms of ratio of biomass of earthworms to biomass of feeds(organic resources) is an important factors for biomass productivity of earthworms and vermicast production. The different stocking rates were 1:16(S-1), 1:32(S-2), 1:48(S-3) and 1:64(S-4), as the ratios of biomass of earthworm to biomass of organic dairy cow manure, respectively. The stocking rate of 1:32(S-2) and 1:46(S-3) were obtained a higher values on increasing rates and conversion efficiency of organic matter to earthworm biomass than other stocking rates. Thus, a stocking rates of 1:32 and 1:46 estimated an optimal stocking rates for maximum biomass productivity of earthworms. A stocking rate of 1:16(S-1) showed a significantly highest values of vermicast production and ratios of vermicasts during the rearing periods.($$P{\leq_-}0.05$$) A stocking rate of 1:48(S-3) showed a highest values of the number of cocoons and vermicasts production per earthworm biomass among the treatment ($$P{\leq_-}0.05$$) The contents of nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate and rearing progressed. Vermicasts have a great deal of potential for crop production and protection in sustainable organic cropping systems.

Wood Biomass Production of Twelve Tree Species in Coppice Plantations Managed Under 1-, 2- and 3- year Rotations (12수종(樹種)에 대(対)한 단벌기(短伐期) 맹아림(萌芽林)의 Biomass 생산(生産))

  • Hyun, Young Il;Kim, Jae Hun;Han, Young Chang;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.30-36
    • /
    • 1982
  • Wood biomass production at 1-year, 2-year, and 3-year rotations on both low and upper hills at 2m 2m spacing (25,000 trees/ha) was studied for a six-year period with following 12 species; Lespedeza cyrtobotrya Amorpha fruticosa. Robinia pseudoacacia, Acer saccharinum, Platanus orientalis Populus alba ${\times}$ P. glandulosa $F_1$, Salix alba, Pinus rigida, Alnus hirsuta var. sibirica, A. inokumai A. gultinosa, and A. incana. In One-year rotation, Lespedeza cyrtobotrya produced largest amoung of biomass (2.6 t/ha/year, fresh weight) and Populus alba ${\times}$ P. glandulosa $F_1$ the second largest (2.2 t/ha/year) on low hill. In two-year rotation, the latter produced the largest amount (4.8 t/ha/year) and Alnus hirsuta var. sibirica second largest (2.8 t/ha/year) on low hill. In three-year rotation, the largest weight (11.2 t/ha/year) was produced by Robinia pseudoacacia and the second largest (6.2 t/ha/year) by Alnus hirsuta var. sibirica on low hill Amorpha fruticosa, Acer saccharinum, Platanus orientalis and Salix alba were not suitable for biomass or fuelwood productio due to poor growth. Biomass yield on upper hill was reduced considerably for all tewlve species, with less than 4 t/year at maximum Only nitrogen fixing species (Robinia and Alnus species) are recommended on upper hill for biomass production wood sprouting ability of species was generally associated with good biomass production. Calori values of ovendry wood ranged from 4,485 cal/g for Salix alba to 5,125 cal/g for Alnus glutinosa. For maximum biomass production a three-year ratation with coppice is preferred to one-year and two-year roataions The best species appeared to be Robinia pseudoacacia and Alnus hirsuta var sibirica.

  • PDF

Trophic Role of Heterotrophic Nano- and Microplankton in the Pelagic Microbial Food Web of Drake Passage in the Southern Ocean during Austral Summer (남극 하계 드레이크 해협의 미세생물 먹이망에서 종속영양 미소형 및 소형플랑크톤의 역할)

  • Yang, Eun-Jin;Choi, Joong-Ki;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.457-472
    • /
    • 2011
  • To elucidate the trophic role of heterotrophic nano- and microplankton (HNMP), we investigated their biomass, community structure, and herbivory in three different water masses, namely, south of Polar Front (SPF), Polar Front Zone (PFZ), the Sub-Antarcitc Front (SAF) in the Drake Passage in the Southern Ocean, during the austral summer in 2002. We observed a spatial difference in the relative importance of the dominant HNMP community in these water masses. Ciliates accounted for 34.7% of the total biomass on an average in the SPF where the concentration of chlorophyll-a was low with the dominance of pico- and nanophytoplankton. Moreover, the importance of ciliates declined from the SPF to the SAF. In contrast, heterotrophic dinoflagellates (HDFs) were the most dominant grazers in the PFZ where the concentration of chlorophyll-a was high with the dominance of net phytoplankton. HNMP biomass ranged from 321.9 to 751.4 $mgCm^{-2}$ and was highest in the PFZ and lowest in the SPF. This result implies that the spatial dynamic of HNMP biomass and community was significantly influenced by the composition and concentration of phytoplankton as a food source. On an average, 75.6%, 94.5%, and 78.9% of the phytoplankton production were consumed by HNMP in the SPF, PFZ, and SAF, respectively. The proportion of phytoplankton grazed by HNMP was largely determined by the composition and biomass of HNMP, as well as the composition of phytoplankton. However, the herbivory of HNMP was one of the most important loss processes affecting the biomass and composition of phytoplankton particularly in the PFZ. Our results suggest that the bulk of the photosynthetically fixed carbon was likely reprocessed by HNMP rather than contributing to the vertical flux in Drake Passage during the austral summer in 2002.

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process (BAC 공정에서 운전기간 및 여층깊이 변화에 따른 생물막 생체량 및 용존유기물질 생분해 특성 평가)

  • Son, Hyeng-Sik;Jung, Chul-Woo;Choi, Young-Ik;Lee, Gun;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1101-1109
    • /
    • 2014
  • In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.

The effect of soil heterogeneity and container length on the growth of Populus euramericana in a greenhouse study

  • Rahman, Afroja;Meng, Loth;Han, Si Ho;Seo, Gi Chun;Jung, Mun Ho;Park, Byung Bae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Soil characteristics along with various container lengths have an important role in the early survival rate and growth of seedlings by influencing the seedling quality. This experiment was conducted to investigate the effect of container length and different soil mixtures on the growth of poplar in a greenhouse. Two types of soil, homogeneous vs. heterogeneous, were used along with two container lengths (30 vs. 60 cm). The heterogeneous soil was made by dividing 50% vermiculite from a mixture of 25% vermicompost and 25% nursery soil in volume. For the homogeneous soil, the above three soil types were mixed together. Populus euramericana clone cuttings were planted in late April, and then, the growth height, root collar diameter (RCD) and biomass were measured in August. The height of the poplar was not significantly affected by container length and soil type, but the RCD was significantly affected by soil type. Leaf and root biomass was higher at the long container than at the short container for both soil treatments, but stem biomass was lower at the heterogeneous soil than at the homogeneous soil treatment. Root to shoot biomass ratio was higher at the heterogeneous soil treatment than at the homogeneous soil treatment by 12%. In conclusion, heterogeneous soil along with a long container is suitable to increase the carbon allocation into the root.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.