Estimation of Optimal Stocking Rate of Earthworm Populations

지렁이 개체군의 최적 사육밀도 추정

  • Received : 2012.07.24
  • Accepted : 2012.09.18
  • Published : 2012.09.28

Abstract

This experiment was carried out to investigate the optimal stocking rate of earthworm populations grown under different stocking rates. The stocking rate in terms of ratio of biomass of earthworms to biomass of feeds(organic resources) is an important factors for biomass productivity of earthworms and vermicast production. The different stocking rates were 1:16(S-1), 1:32(S-2), 1:48(S-3) and 1:64(S-4), as the ratios of biomass of earthworm to biomass of organic dairy cow manure, respectively. The stocking rate of 1:32(S-2) and 1:46(S-3) were obtained a higher values on increasing rates and conversion efficiency of organic matter to earthworm biomass than other stocking rates. Thus, a stocking rates of 1:32 and 1:46 estimated an optimal stocking rates for maximum biomass productivity of earthworms. A stocking rate of 1:16(S-1) showed a significantly highest values of vermicast production and ratios of vermicasts during the rearing periods.($$P{\leq_-}0.05$$) A stocking rate of 1:48(S-3) showed a highest values of the number of cocoons and vermicasts production per earthworm biomass among the treatment ($$P{\leq_-}0.05$$) The contents of nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate and rearing progressed. Vermicasts have a great deal of potential for crop production and protection in sustainable organic cropping systems.

사육밀도를 달리 했을 때 지렁이 개체군의 생체량 증가를 위한 최적 사육밀도를 추정하려고 하였다. 실험결과를 요약하면 다음과 같다. 1. 사육밀도 S-2과 S-3에서 상대증체량, 생체중 증가율과 유기물 전환효율이 높은 값을 나타내어, 지렁이 개체군의 최대 생체량을 얻기 위한 최적 사육밀도로 추정되었다. 이를 지렁이 생체중과 먹이량의 비율로 나타내면 1:32-1:48의 범위였다. 2. 사육밀도 S-1(1:16)에서 모든 조사시기의 분립생산량이 유의하게 많았고 분립비율도 유의하게 높았다($$P{\leq_-}0.05$$). 3. 사육밀도 S-3(1:48)에서 지렁이 생체중당 난포수와 분립생산량이 가장 많았다($$P{\leq_-}0.05$$). 4. 사육밀도가 높아지고 사육기간이 길어짐에 따라 분립의 전 질소함량, 유효인산함량, 양이온치환능력(CEC) 및 양이온 함량이 증가되는 경향이었다. 5. 유기농업에서 지렁이 분립은 상토 재와 토양개량제 및 작물보호를 위한 농자재로서 잠재적 유용성은 매우 높다고 판단된다.

Keywords

References

  1. 고재경․권영택․이창호. 1995. 붉은 지렁이(Lumbricus rubellus L.)와 줄지렁이(Helodrilus foetidus)를 이용한 유기성 슬러지처리 효율성 비교. 한국유기성자원학회 봄철학술대회 p. 102-109.
  2. 이주삼. 1995. Vermicomposting에 의한 우분의 처리 - 먹이의 탄질율과 사육밀도가 지렁이의 생육과 분립생산에 미치는 영향. 한국축산시설환경학회지 1(1): 65-75.
  3. 이주삼․김만중․김남천. 2005. Vermicomposting에 의한 음식물쓰레기의 처리. 한국유기성자원학회지 13(3): 51-62.
  4. 이주삼․감만중. 2006. Vermicomposting에 의한 돈분의 처리. -음식물쓰레기와의 혼합처리-. 한국축산시설환경학회지 12(2): 75-84.
  5. 이지영․이주삼. 2008. 먹이조건의 차이가 지렁이의 생육, 분립생산량 및 체조직으로 유기물 전환효율에 미치는 영향. 한국유기농업학회지 16(3): 287-298.
  6. 이주삼․최덕천. 2009. 지렁이에 의한 돈분 퇴비화용 유기성 자원 연구. 한국축산시설환경학회지 15(3): 289-296.
  7. 이지영․이주삼. 2012. 사육밀도의 차이가 지렁이의 생육, 체조직으로의 유기물 전환효 율 및 분립생산에 미치는 영향. 한국축산시설환경학회지 18(2): 63-74
  8. Atiyeh, R. M., S. Subler, C. A. Edwards, G. Bachman, J. D. Metzger, and W. Shuster. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44: 579-590. https://doi.org/10.1078/S0031-4056(04)70073-6
  9. Atiyeh, R. M., C. A. Edwards, N. G. Arancon, and J. D. Metzger. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Biores. Technol. 84: 7-14.
  10. Bouche, M. B. 1977. Strategies lombriciennes. In U. Lohm and T. Persson, (eds.) Soil Organism as Components of Ecosystems. Bio. Bull. 25: 122-132.
  11. Cantanazaro, C. J., K. A. Williams, and R. J. Sauve. 1998. Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum. J. of Plant Nutrition 21: 1025-1036. https://doi.org/10.1080/01904169809365461
  12. Chaoui, H. I., L. M. Zibilske, and T. Ohno. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35: 295-302. https://doi.org/10.1016/S0038-0717(02)00279-1
  13. Devliegher, W. and E. Vertraete. 1997. The effect of Lumbricus terrestris on soil in relation to plant growth: effect of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol. Biochem. 29(3/4): 341-346. https://doi.org/10.1016/S0038-0717(96)00096-X
  14. Domingues, J. and C. A. Edwards. 1997. Effect of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Bio. Biochem. 29: 743-746. https://doi.org/10.1016/S0038-0717(96)00276-3
  15. Domingues, J., C. A. Edwards, and J. Ashby, 2001. The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 45: 341- https://doi.org/10.1078/0031-4056-00091
  16. Edwards, C. A. 1983. Production of animal feed protein from tomato wastes. In Ledward, D. A., Taylor, A. J., Laurie, R. A. (eds.), Proceedings of Easter Schools in Agriculture: Upgrading waste for feed and food. Butterworths, London.
  17. Edwards, C. A. 1988. Breakdown of animal, vegetable and industrial organic wastes by earthworm. In Edwards, C. A., Neuhauser, E., (eds.), Earthworm in Waste and Environmental Management. SPB Academic Publishing. The Hague, pp. 21-31.
  18. Edwards, C, A. and I. Burrows. 1988. The potential of earthworm compost as plant growth media. In Edwards, C. A., Neuhauser, E. (eds.), Earthworm in Waste and Environmental Management. SPB Academic Publishing. The Hague, pp. 211-219.
  19. Edwards, C. A., and Fletcher, K. E., 1988. Interactions between earthworms and microorganisms in organic matter breakdown. Agriculture, Ecosystem and Environment 24: 235-247. https://doi.org/10.1016/0167-8809(88)90069-2
  20. Edwards, C. A., P. J., Bohlen, D. R. Linden, and S. Subler. 1995. Earthworms in agroecosystems. In Hendrix, P. F.,(ed.), Earthworm ecology and Biogeography in North America. Lewis, Boca Raton, pp. 185-213.
  21. Edwards, C. A., N. Q. Arancon, M. Vasko-Benett, A. Aska, G. Keeney, and B. Little. 2009. Suppression of green peach aphid (Myzus persidae) (Sulz.), citrus mealybug (Plunococcus citri) (Risso.) and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicompost. Crop Prot. 29(1): 80-93. https://doi.org/10.1016/j.indcrop.2008.04.008
  22. Hartensein, R. 1983. Assimilation by Eisenia fetida: In Satchell, J. E. (ed.), Earthworm Ecology. Chapman and Hall, Cambridge, pp. 297-308.
  23. Hartenstein, R. and L. Amico. 1983. Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol. Biochem. 15: 51-54. https://doi.org/10.1016/0038-0717(83)90118-9
  24. Lavelle, P., B. Sow, and R. Schaefer, 1980. The geophagous earthworms community in the Lamto savanna (Ivory Coast). Niche partitioning and utilization of soil nutritive resources. In D. L. Dindal (ed.), Soil Biology as Related to Land Use Practices, pp. 653-672.
  25. Lee, K. E. 1983. The influence of earthworms and termites on soil nitrogen cycling. In "New Trends in Soil Biology" (Ph. Lebrun, H. M., Andre, A, de Medts,, C. Gregoire-Wibo and G. Wauthy, eds.), pp. 35-48. Proc. 8th Intl Colloquium Soil Zool., Louvain-la-Neuve, 1982. Dieu-Brichart, Ottignies-Louvain-la-Neuve.
  26. MacAuther, R. H. and E. O. Wilson. 1967a. Some generalized theorems of natural selection. Proc. Natl. Acd. Sci. USA. 48: 1893-1897.
  27. Muscols, A., F. Bavolo, F. Gionfriddo, and S. Nardi. 1999. Earthworm humic matter produces auxins-like effect on Daucus Carot a cell growth and nitrate metabolism. Soil Biol. Biochem. 31: 1303-1311. https://doi.org/10.1016/S0038-0717(99)00049-8
  28. Ndegwa, P. M. and S. A. Thompsom. 2001. Integrating composting and vermicomposting in the treatment of bio-conversion of biosolids. Biores. Technol. 76: 107-111. https://doi.org/10.1016/S0960-8524(00)00104-8
  29. Orozco, F. M., J. Cegarra, L. M. Trujillo, and A. Roig, 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents of the availability of nutrients. Biol. Fertil. Soils 22: 162-166. https://doi.org/10.1007/BF00384449
  30. Satchell, J. E. 1980. Earthworm populations of experimental birch plots on Calluna Podzol. Soil Biol. Biochem. 12: 311-316. https://doi.org/10.1016/0038-0717(80)90002-4
  31. Simsek-Ersahin, Y., K. Haktanir, and Y. Yamar. 2009. Vermicomposti from agricultural wastes suppress Rhizoctonia solani Kuhn in cucumber seedlings. J. Plant Dis. Prot. 116: 182-188. https://doi.org/10.1007/BF03356308
  32. Subler, S., C. A. Edwards, and J. Metzger. 1998. Comparing vermicomposts and composts. Biocycle 39: 63-66.
  33. Tomati, U., A. Grapelli, and E. Galli. 1987. The presence of growth regulators in earthworm- worked wastes (In On Earthworms. A. M. Bonvicini Pagliai & P. Omodeo eds.). Selected Symposia and Monographs U.Z.I., 2, Mucchi, Modena pp. 423-435.
  34. Tomati, U., E. Galli, A. Grapelli, and J. S. Hard. 1994. Plant metabolism as influenced by earthworm casts. Mittellungen aus dem Hamburgischem Zoologischen Museum and Institute 89: 179-185.
  35. Vinceslas-Akpa, M. and M. Loquet. 1997. Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol. Biochem. 29: 751-758. https://doi.org/10.1016/S0038-0717(96)00201-5
  36. Yardim, E. N., N. Q. Arancon, C. A. Edwards, T. O. Oliver, and R. Byrne. 2006. Suppression of hornworm (Manduca quinqemaculata) and cucumber beetles (Acalymma vittatum and Dia botrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia 50: 23-29. https://doi.org/10.1016/j.pedobi.2005.09.001
  37. Zaller, J. G. 2006. Foliar spraying of vermicompost extracts: effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol. Agric. Hortic. 24: 165-180 https://doi.org/10.1080/01448765.2006.9755017