Browse > Article
http://dx.doi.org/10.5322/JESI.2014.23.6.1101

Evaluation of Biomass of Biofilm and Biodegradation of Dissolved Organic Matter according to Changes of Operation Times and Bed Depths in BAC Process  

Son, Hyeng-Sik (Division of Policy Panning, Ulsan Technopark)
Jung, Chul-Woo (Division of Policy Panning, Ulsan Technopark)
Choi, Young-Ik (Dept. of Environmental Engineering, Dong-A University)
Lee, Gun (Dept. of Environmental Engineering, Dong-A University)
Son, Hee-Jong (Water Quality Institute, Water Authority)
Publication Information
Journal of Environmental Science International / v.23, no.6, 2014 , pp. 1101-1109 More about this Journal
Abstract
In this study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the 12 months of operation. GAC particles and water samples were sampled from four different depths (-5, -25, -50 and -90 cm from surface of GAC bed) and attached biomass were measured with adenosine tri-phosphate (ATP) analysis and heterotrophic plate count (HPC) method. The attached biomass accumulated rapidly on the GAC particles of top layer throughout all levels in the filter during the 160 days (BV 23,000) of operation and maintained a steady-state afterward. During steady-state, biomass (ATP and HPC) concentrations of top layer in the BAC filer were $2.1{\mu}g{\cdot}ATP/g{\cdot}GAC$ and $3.3{\times}10^8cells/g{\cdot}GAC$, and 85%, 83% and 99% of the influent total biodegradable dissolved organic carbon ($BDOC_{total}$), $BDOC_{slow}$ and $BDOC_{rapid}$ were removed, respectively. During steady-state process, biomass (ATP and HPC) concentrations of middle layer (-50 cm) and bottom layer (-90 cm) in the BAC filter were increased consistently. Biofilm development (growth rate) proceed highest rate in the top layer of filter (${\mu}_{ATP}=0.73day^{-1}$; ${\mu}_{HPC}=1,74day^{-1}$) and 78%~87% slower in the bottom layer (${\mu}_{ATP}=0.14day^{-1}$; ${\mu}_{HPC}=0.34day^{-1}$). This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilter.
Keywords
Biological activated carbon (BAC); Biomass; Biodegradable dissolved organic carbon (BDOC); Bed volume; Bed depth; Growth rate;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yapsakli, K., Cecen, F., 2010, Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochem., 45, 355-362.   DOI
2 Volk, C. J., LeChevallier, M. W., 2002, Effects of conventional treatment on AOC and BDOC levels, J. Am. Water Works Assoc., 94, 112-123.
3 Wang, J. Z., Summers, R. S., Miltner, R. J., 1995, Biofiltration performance 1. relationship to biomass, J. Am. Water Works Assoc., 87, 55-63.   DOI
4 Yavich, A. A., Lee, K. H., Chen, K. C., Pape, L., Masten, S. J., 2004, Evaluation of biodegradability of NOM after ozonation, Water Res., 38, 2839-2846.   DOI   ScienceOn
5 Son, H. J., Yoo, S. J., Roh, J. S., Yoo, P. J., 2009, Biological activated carbon (BAC) process in water treatment, J. Kor. Soc. Environ. Eng., 31(4), 308-323.   과학기술학회마을
6 Son, H. J., Choi, J. T., Son, H. S., Lee, S. J., 2012, Analysis of attached bacterial communities of biological activated carbon process using DGGE method, J. Kor. Soc. Environ. Eng., 34(8), 533-540.   과학기술학회마을   DOI
7 Son, H. J., Park, H. G., Lee, S. A., Jung, E. Y., Jung, C. W., 2005, The characteristics of microbial community for biological activated carbon in water treatment plant, J. Kor. Soc. Environ. Eng., 27, 1311-1320.   과학기술학회마을
8 Son, H. J., Roh, J. S., Kang, L. S., 2004, Determination of BDOCrapid and BDOCslow using batch bio-reactor, J. Korean Soc. Water Environ., 20(4), 357-364.
9 Stewart, M. H., Wolfe, R. L., Means, E. G., 1990, Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking-water, Appl. Environ. Microbiol., 56, 3822-3829.
10 Urfer, D., Huck, P. M., 2001, Measurement of biomass activity in drinking water biofilters using a respirometric method, Water Res., 35, 1469-1477.   DOI   ScienceOn
11 van der Aa, L, T, J., Kolpa, R. J., Magic-Knezev, A., Rietveld, L. C., van Dijk, J. C., 2006, Biomass development in biological activated carbon filters, Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, R., Graham, N., Collins, R., (Eds), IWA Publishing, Mulheim an der Ruhr, Germany, pp. 293-303.
12 Velten, S., Boller, M., Koster, O., Helbing, J., Weilenmann, H., Hammes, F., 2011, Development of biomass in a drinking water granular active carbon (GAC) filter, Water Res., 45, 6347-6354.   DOI   ScienceOn
13 Velten, S., Hammes, F., Boller, M., Egli, T., 2007, Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination, Water Res., 41, 1973-1983.   DOI
14 Herzberg, M., Dosoretz, C. G., Tarre, S., Green, M., 2003, Patchy biofilm coverage can explain the potential advantage of BGAC reactors, Environ. Sci. Technol., 37(18), 4247-4280.
15 Chien, C. C., Kao, C. M., Chen, C. W., Dong, C. D., Wu, C. Y., 2008, Application of biofiltration system on AOC removal: column and field studies, Chemosphere, 71, 1786-1793.   DOI
16 Dewaters, J. E., Digiano, F. A., 1990, The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed, J. Am. Water Works Assoc., 82, 69-75.   DOI
17 Fonseca, A. C., Summers, R. S., Hernandez, M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Water Res., 35, 3817-3824.   DOI   ScienceOn
18 Magic-Knezev, A., van der Kooij, D., 2004, Optimization and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment, Water Res., 38, 3971-3979.   DOI   ScienceOn
19 Seredynska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A. W., 2006, Biological activation of carbon filters, Water Res., 40, 355-363.   DOI   ScienceOn
20 Servais, P., Billen, G., Bouillot, P., 1994, Biological colonization of granular activated carbon filters in drinking-water treatment, J. Environ. Eng., 120, 888-899.   DOI   ScienceOn
21 Servais, P., Billen, G., Ventresque, C., Bablon, G. P., 1991, Microbial activity in GAC filters at the Choisy-Le-Roi treatment-plant, J. Am. Water Works Assoc., 83(2), 62-68.
22 Magic-Knezev, A., van der Kooij, D., 2006, Nutritional versatility of two Polaromonas related bacteria isolated from biological granular activated carbon filters, Recent Progress in Slow Sand and Alternative Biofiltration Processes, Gimbel, R., Graham, N., Collins, R., (Eds), IWA Publishing, Mulheim an der Ruhr, Germany, pp. 303-311.
23 Carlson, K. H., Amy, G. L., 1997, The formation of filter-removable biodegradable organic matter during ozonation, Ozone Sci. Eng., 19, 179-199.   DOI   ScienceOn
24 Carlson, K. H., Amy, G. L., 1998, BOM removal during biofiltration, J. Am. Water Works Assoc., 90(12), 42-52.   DOI
25 Carlson, K. H., Amy, G. L., 2001, Ozone and biofiltration optimization for multiple objectives, J. Am. Water Works Assoc., 93, 88-98.
26 Wakelin, S. A., Page, D. W., Pavelic, P., Gregg, A. L., Dillon, P. J., 2010, Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth, Water Sci. & Technol.: Water Suppl., 10, 145-156.   DOI