Browse > Article

Estimation of Optimal Stocking Rate of Earthworm Populations  

Lee, Ju-Sam (연세대학교 생명과학기술학부)
Noh, Jin-Hwan (연세대학교)
Park, Sang-Soo (연세대학교)
Lee, Hee-Choong (연세대학교 생명과학기술학부)
Publication Information
Korean Journal of Organic Agriculture / v.20, no.3, 2012 , pp. 369-383 More about this Journal
Abstract
This experiment was carried out to investigate the optimal stocking rate of earthworm populations grown under different stocking rates. The stocking rate in terms of ratio of biomass of earthworms to biomass of feeds(organic resources) is an important factors for biomass productivity of earthworms and vermicast production. The different stocking rates were 1:16(S-1), 1:32(S-2), 1:48(S-3) and 1:64(S-4), as the ratios of biomass of earthworm to biomass of organic dairy cow manure, respectively. The stocking rate of 1:32(S-2) and 1:46(S-3) were obtained a higher values on increasing rates and conversion efficiency of organic matter to earthworm biomass than other stocking rates. Thus, a stocking rates of 1:32 and 1:46 estimated an optimal stocking rates for maximum biomass productivity of earthworms. A stocking rate of 1:16(S-1) showed a significantly highest values of vermicast production and ratios of vermicasts during the rearing periods.($$P{\leq_-}0.05$$) A stocking rate of 1:48(S-3) showed a highest values of the number of cocoons and vermicasts production per earthworm biomass among the treatment ($$P{\leq_-}0.05$$) The contents of nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate and rearing progressed. Vermicasts have a great deal of potential for crop production and protection in sustainable organic cropping systems.
Keywords
cow manure; stocking rate; vermicasts; conversion efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, K. E. 1983. The influence of earthworms and termites on soil nitrogen cycling. In "New Trends in Soil Biology" (Ph. Lebrun, H. M., Andre, A, de Medts,, C. Gregoire-Wibo and G. Wauthy, eds.), pp. 35-48. Proc. 8th Intl Colloquium Soil Zool., Louvain-la-Neuve, 1982. Dieu-Brichart, Ottignies-Louvain-la-Neuve.
2 MacAuther, R. H. and E. O. Wilson. 1967a. Some generalized theorems of natural selection. Proc. Natl. Acd. Sci. USA. 48: 1893-1897.
3 Muscols, A., F. Bavolo, F. Gionfriddo, and S. Nardi. 1999. Earthworm humic matter produces auxins-like effect on Daucus Carot a cell growth and nitrate metabolism. Soil Biol. Biochem. 31: 1303-1311.   DOI   ScienceOn
4 Ndegwa, P. M. and S. A. Thompsom. 2001. Integrating composting and vermicomposting in the treatment of bio-conversion of biosolids. Biores. Technol. 76: 107-111.   DOI   ScienceOn
5 Orozco, F. M., J. Cegarra, L. M. Trujillo, and A. Roig, 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents of the availability of nutrients. Biol. Fertil. Soils 22: 162-166.   DOI   ScienceOn
6 Satchell, J. E. 1980. Earthworm populations of experimental birch plots on Calluna Podzol. Soil Biol. Biochem. 12: 311-316.   DOI   ScienceOn
7 Simsek-Ersahin, Y., K. Haktanir, and Y. Yamar. 2009. Vermicomposti from agricultural wastes suppress Rhizoctonia solani Kuhn in cucumber seedlings. J. Plant Dis. Prot. 116: 182-188.   DOI
8 Subler, S., C. A. Edwards, and J. Metzger. 1998. Comparing vermicomposts and composts. Biocycle 39: 63-66.
9 이주삼․김만중․김남천. 2005. Vermicomposting에 의한 음식물쓰레기의 처리. 한국유기성자원학회지 13(3): 51-62.
10 이주삼․감만중. 2006. Vermicomposting에 의한 돈분의 처리. -음식물쓰레기와의 혼합처리-. 한국축산시설환경학회지 12(2): 75-84.
11 이지영․이주삼. 2008. 먹이조건의 차이가 지렁이의 생육, 분립생산량 및 체조직으로 유기물 전환효율에 미치는 영향. 한국유기농업학회지 16(3): 287-298.
12 이주삼․최덕천. 2009. 지렁이에 의한 돈분 퇴비화용 유기성 자원 연구. 한국축산시설환경학회지 15(3): 289-296.
13 이지영․이주삼. 2012. 사육밀도의 차이가 지렁이의 생육, 체조직으로의 유기물 전환효 율 및 분립생산에 미치는 영향. 한국축산시설환경학회지 18(2): 63-74
14 고재경․권영택․이창호. 1995. 붉은 지렁이(Lumbricus rubellus L.)와 줄지렁이(Helodrilus foetidus)를 이용한 유기성 슬러지처리 효율성 비교. 한국유기성자원학회 봄철학술대회 p. 102-109.
15 이주삼. 1995. Vermicomposting에 의한 우분의 처리 - 먹이의 탄질율과 사육밀도가 지렁이의 생육과 분립생산에 미치는 영향. 한국축산시설환경학회지 1(1): 65-75.
16 Atiyeh, R. M., S. Subler, C. A. Edwards, G. Bachman, J. D. Metzger, and W. Shuster. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44: 579-590.   DOI   ScienceOn
17 Atiyeh, R. M., C. A. Edwards, N. G. Arancon, and J. D. Metzger. 2002. The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Biores. Technol. 84: 7-14.
18 Bouche, M. B. 1977. Strategies lombriciennes. In U. Lohm and T. Persson, (eds.) Soil Organism as Components of Ecosystems. Bio. Bull. 25: 122-132.
19 Cantanazaro, C. J., K. A. Williams, and R. J. Sauve. 1998. Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum. J. of Plant Nutrition 21: 1025-1036.   DOI   ScienceOn
20 Chaoui, H. I., L. M. Zibilske, and T. Ohno. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35: 295-302.   DOI   ScienceOn
21 Devliegher, W. and E. Vertraete. 1997. The effect of Lumbricus terrestris on soil in relation to plant growth: effect of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol. Biochem. 29(3/4): 341-346.   DOI
22 Domingues, J. and C. A. Edwards. 1997. Effect of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Bio. Biochem. 29: 743-746.   DOI   ScienceOn
23 Domingues, J., C. A. Edwards, and J. Ashby, 2001. The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 45: 341-   DOI   ScienceOn
24 Edwards, C. A. 1983. Production of animal feed protein from tomato wastes. In Ledward, D. A., Taylor, A. J., Laurie, R. A. (eds.), Proceedings of Easter Schools in Agriculture: Upgrading waste for feed and food. Butterworths, London.
25 Edwards, C. A. 1988. Breakdown of animal, vegetable and industrial organic wastes by earthworm. In Edwards, C. A., Neuhauser, E., (eds.), Earthworm in Waste and Environmental Management. SPB Academic Publishing. The Hague, pp. 21-31.
26 Tomati, U., A. Grapelli, and E. Galli. 1987. The presence of growth regulators in earthworm- worked wastes (In On Earthworms. A. M. Bonvicini Pagliai & P. Omodeo eds.). Selected Symposia and Monographs U.Z.I., 2, Mucchi, Modena pp. 423-435.
27 Tomati, U., E. Galli, A. Grapelli, and J. S. Hard. 1994. Plant metabolism as influenced by earthworm casts. Mittellungen aus dem Hamburgischem Zoologischen Museum and Institute 89: 179-185.
28 Vinceslas-Akpa, M. and M. Loquet. 1997. Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol. Biochem. 29: 751-758.   DOI   ScienceOn
29 Zaller, J. G. 2006. Foliar spraying of vermicompost extracts: effects on fruit quality and indications of late-blight suppression of field-grown tomatoes. Biol. Agric. Hortic. 24: 165-180   DOI   ScienceOn
30 Yardim, E. N., N. Q. Arancon, C. A. Edwards, T. O. Oliver, and R. Byrne. 2006. Suppression of hornworm (Manduca quinqemaculata) and cucumber beetles (Acalymma vittatum and Dia botrica undecimpunctata) populations and damage by vermicomposts. Pedobiologia 50: 23-29.   DOI   ScienceOn
31 Edwards, C, A. and I. Burrows. 1988. The potential of earthworm compost as plant growth media. In Edwards, C. A., Neuhauser, E. (eds.), Earthworm in Waste and Environmental Management. SPB Academic Publishing. The Hague, pp. 211-219.
32 Edwards, C. A., and Fletcher, K. E., 1988. Interactions between earthworms and microorganisms in organic matter breakdown. Agriculture, Ecosystem and Environment 24: 235-247.   DOI
33 Edwards, C. A., P. J., Bohlen, D. R. Linden, and S. Subler. 1995. Earthworms in agroecosystems. In Hendrix, P. F.,(ed.), Earthworm ecology and Biogeography in North America. Lewis, Boca Raton, pp. 185-213.
34 Edwards, C. A., N. Q. Arancon, M. Vasko-Benett, A. Aska, G. Keeney, and B. Little. 2009. Suppression of green peach aphid (Myzus persidae) (Sulz.), citrus mealybug (Plunococcus citri) (Risso.) and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicompost. Crop Prot. 29(1): 80-93.   DOI   ScienceOn
35 Hartensein, R. 1983. Assimilation by Eisenia fetida: In Satchell, J. E. (ed.), Earthworm Ecology. Chapman and Hall, Cambridge, pp. 297-308.
36 Hartenstein, R. and L. Amico. 1983. Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol. Biochem. 15: 51-54.   DOI   ScienceOn
37 Lavelle, P., B. Sow, and R. Schaefer, 1980. The geophagous earthworms community in the Lamto savanna (Ivory Coast). Niche partitioning and utilization of soil nutritive resources. In D. L. Dindal (ed.), Soil Biology as Related to Land Use Practices, pp. 653-672.