• Title/Summary/Keyword: 900MHz Antenna

Search Result 105, Processing Time 0.023 seconds

A Study on a Wideband Helical Antenna for Mobile Handset using Parasitic Element Effect (기생소자 효과를 이용한 이동 단말기용 광대역 헬리컬 안테나 연구)

  • 성원모;양묘근;전용승;이치우;박진희;최학근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.899-903
    • /
    • 2003
  • In this paper, a wide band helical antenna for mobile handset using parasitic element effect has been investigated. To obtain the effect of parasitic element, we utilized the cylindrical conductor which is not feed. As thickness of cylindrical conductor is increasing, second and third resonance frequency become abruptly variable. In case of that 4.5mm diameter parasitic element cylindrical conductor is inserted, normal mode helical antenna obtained bandwidth of around 900 MHz on the limit of R. L., - 5 dB.

Design and fAbrication of Triple Band WLAN Antenna Applicable to Wi-Fi 6E Band with DGS (DGS를 갖는 Wi-Fi 6E 대역을 위한 삼중대역 WLAN 안테나 설계 및 제작)

  • Sang-Wook Park;Gi-Young Byun;Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2024
  • In this paper, we propose a triple band WLAN antenna for Wi-Fi 6E band with DGS. The proposed antenna has the characteristics required frequency band and bandwidth by considering the interconnection of two strip lines and three areas on the ground place. The total substrate size is 31 mm (W) × 50 mm (L), thickness (h) 1.6 mm, and the dielectric constant is 4.4, which is made of 22 mm (W6 + W4 + W5) × 43mm (L1 + L2 + L3 + L5) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 340 MHz (1.465 to 1.805 GHz) for 900 MHz band, 480 MHz (2.155 to 2.635 GHz) for 2.4 GHz band and 1950 MHz (4.975 to 6.925 GHz) for 5.0/6.0 GHz band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency triple band as required.

A Study on the Enhancement of Isolation of the MIMO Antenna for LTE/DCS1800/USPCS1900 Handset (LTE/DCS1800/USPCS1900 단말기용 MIMO 안테나의 격리도 개선에 관한 연구)

  • Cho, Dong-Ki;Son, Ho-Cheol;Lee, Jin-Woo;Lee, Sang-Woon;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.80-85
    • /
    • 2010
  • In this paper, a MIMO antenna is proposed for LTE/DCSl800/USPCSl900 handset applications. The proposed antenna is based on the IFA and its wide bandwidth is obtained by using a stagger tuning technique. To improve the isolation, a suspended line is connected to the shorting points in two antennas, and capacitors and inductors are added to the connected suspended line. Two identical antennas of which dimension is 2.8cc($40{\times}10{\times}7mm$) are mounted on the two end lines of the system ground plane($40{\times}60mm$). Analysis of the antenna performance and optimization is performed using CST Microwave Studio. The bandwidths are satisfied for LTE band class 13(746-787MHz), class 14(758-798MHz) and DCSl800/USPCSl900 band (1710-1990MHz). The isolations between two antennas are about -12dB for LTE band and -10dB for DCSl800/USPCSl900 band. And the radiation efficiency of each antenna is about for LTE band 33% and 45% for DCSl800/USPCSl900 band respectively.

A Design of Isotropic RFID Metal Tag Antenna with a PIFA Structure (PIFA구조를 가지는 등방성 RFID 메탈 태그 안테나)

  • Yun, Jung Mee;Chung, Jin Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • In this paper, we proposed the metal tag antenna of PIFA structure with an isotropic radiation pattern when tag attached the metal material. The antenna consist of antenna body, horizontal patch and ground, and inserted a substrate with high dielectric constant between the antenna body and ground in order to miniaturize the antenna size. The antenna body with symmetric structure is designed to produce an oppositely directed currents. The simulation shows the impedance bandwidth has 20 MHz (900 ~ 920 MHz) and the maximum radiation gain satisfy the -10 dBi and -15 dBi when the tag is in air and attach the metal material. Also, the proposed antenna operates with an isotropic radiation pattern due to satisfy the gain deviation lower than 6 dB, respectively.

  • PDF

Slit Antenna for Mobile-communication (이동통신용 슬리트안테나)

  • 이상회
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.99-104
    • /
    • 1998
  • It is a good flexibility of bending body and non-interaction of outer bodies for slit antenna to be being studied and developed in this paper. The characteristics of leaked EM waves in slit transmission line are applied to antennas of tele-communication systems. The computer simulations using a special software adapt to design a new slit antenna, and to apply to tele-communications systems with frequencies of land mobile communication (800-900MHz). The good results of which reflection coefficient 511 is 0.21 and directivity is 2.9 and band-widths are 1.5MHz in 851MHz are shown.

  • PDF

Design and Implementation of Internal Multi-Band Folded Monopole Antenna for Mobile Handset Applications

  • Yoo, Joo-Bong;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.630-634
    • /
    • 2010
  • In this paper, we designed and fabricated a multi-band folded monopole antenna for mobile handsets that can be used for multiple services. The proposed antenna, with a small size of $28.060{\times}12.665{\times}5.035mm^3$ can provide sufficient bandwidth to cover the GSM900 (Global System for Mobile Communications: 880-960 MHz), DCS (Digital Cellular System: 1710-1880 MHz), K-PCS (Korea-Personal Communication Service: 1750-1870 MHz), Wibro (2300-2390 MHz) and Bluetooth (2400-2483 MHz) bands.

Design and Implementation of Internal Multiband Loop Embedded Monopole Antenna for Mobile Handset

  • Jung, Pil Hyun;Yang, Cheol Yong;Lee, Seong Ha;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.484-491
    • /
    • 2013
  • In this paper, we proposed an internal multiband loop embedded monopole antenna for mobile handset that could be used for smart phones. The proposed antenna has a volume of 40 mm(W) ${\times}$ 15 mm(L) ${\times}$ 5 mm(H), ground plane size is 40 mm(W) ${\times}$ 80 mm(L), and covers the GSM900 (Global System for Mobile communications : 880-960 MHz), K-PCS (Korea-Personal Communications Service : 1750-1870 MHz), US-PCS (US Personal Communications Service : 1850-1990 MHz), WCDMA (Wideband Code Division Multiple Access : 1920-2170 MHz), Wibro (2300-2390 MHz), Bluetooth (2400-2483 MHz) and WLAN (Wireless Local Area Network : 2400-2483.5 MHz) bands for VSWR (voltage standing wave ration) less than 3. The proposed loop adding design at middle section of longest branch showed wide impedance bandwidth for the lowest resonance frequency band. The proposed antenna have a lowest resonance frequency band from 738 MHz to 1075 MHz for S11 value of -6dB. A HFSS (High Frequency Structure Simulator) of the Ansys Corporation based on a finite element method is employed to analyze the proposed antenna in the design process and to compare the simulation and experimental results.

A Design of Multi-Band Chip Antenna for Mobile Handsets (휴대단말기용 다중 대역 칩 안테나 설계)

  • Cho, In-Ho;Jung, Jin-Woo;Lee, Cheon-Hee;Lee, Yong-Hee;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.477-483
    • /
    • 2008
  • The paper introduces mobile handset multi-band chip antenna to be used on meander line PIFA structure and parasite patch. The proposed antenna uses an FR-4 substrate. The top layer is consist of meander lines PIFA structure to implement GSM900 and is connected with each rad and meander line on the via-hole for maximize space efficiency. The middle layer is designed with the signal line and gap to implement a DCS and PCS bands, the bottom layer which is added to a parasite patch on the ground can be show an adjust of frequency and impedance character by the connection of the radiators of middle layer and coupling. The fabricated antenna with the dimension of $28{\times}6{\times}4\;mm^3$. The ground plane a dimension of $45{\times}90\;mm$, designed by a commercial software CST simulator. The experimental results show that the bandwidth for(VSWR<3) is 90($875{\sim}965$) MHz in GSM900 band operation and 380($1,670{\sim}2,050$) MHz in DCS, PCS band operation. The maximum gains of antenna are 0.25 dBi, 3.65 dBi and 3.3 dBi at resonance frequencies and it has omni-directional pattern practically.

Design of mobile Radio Frequency Identification (m-RFID) antenna (Mobile RFID (Radio Frequency Identification) 용 안테나 계)

  • Kim, Yong-Jin;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3608-3613
    • /
    • 2009
  • In this paper, we propose a mobile Radio Frequency Identification antenna for mobile hand set. The proposed antenna with directive radiation characteristics based on combination of electric-magnetic radiators can be installed in the mobile hand-set. The combination of PIFA antenna for electric radiator and loop antenna for magnetic radiator is presented and designed for료 m-RFID reader system. Target frequency band is 900-MHz band. and desired gain is 4dBi. The antenna is simulated using Ansoft HFSS software and shows expected results. The antenna is also manufactured using FR4-epoxy circuit board (h=1 mm, $\varepsilon_{\tau}=4.4$). There are good agreements between the simulated and measured VSWR curves and radiation characteristics.

A Study on Design and Fabrication of Quad-Band Small Antenna with MD(magneto-dielectric) material for mobile Applications (MD 매질을 이용한 이동통신용 Quad-Band 소형 안테나 설계 및 구현에 관한 연구)

  • Kim, Woo-Su;Yoon, Cheol;Oh, Soon-Soo;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1270-1276
    • /
    • 2010
  • In this paper, Quad-Band small antenna for GSM850, GSM900, DCS1800, DCS1900 is designed and fabricated. The antenna achieved the size reduction of over 67.9 % than the conventional PIFA(Planar Inverted-F Antenna) by using a MD(Magneto-Dielectric) material. A simple feeding microstrip line is used to feed the antenna from a $50{\Omega}$ coaxial line, which is capacitively coupled to the grounded patch structure for broadband characteristics. The impedance bandwidth the proposed antenna shows good results as broadband characteristics of 1341 MHz (801 ~ 2142 MHz) in VSWR < 3 (${\leq}\;-6\;dB$) and the gain is -6.67 ~ 4.25 dBi in the operating frequency.