• Title/Summary/Keyword: 800MHz 대역

Search Result 87, Processing Time 0.02 seconds

Design of Tunable Ceramic Bandpass Filter in UHF Band (UHF대역 가변 세라믹 대역통과 여파기의 설계)

  • 김윤조;황희용;성규제;윤상원;장익수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • A 2-pole tunable bandpass filter was design and fabricated using ceramic coaxial resonators and varactor diodes for UHF band. By inspection of frequency characteristics of the T-and $\pi$-type inverter equivalent circuits, we can design a two-pole tunable BPF with only two varactors. The measured data of the filter show 800 MHz-900 MHz tunable center frequency range, 4.5 dB insertion loss, 0.5 dB passband ripple and at least 15 dB return loss, which agree well with the simulated results.

  • PDF

The Design and Manufactured of U-Slot Broadband Antenna using L-Shaped 800MHz Band (800MHz 대역용 L형 급전구조를 이용한 U-Slot 광대역 안테나 설계 및 제작)

  • Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.342-347
    • /
    • 2006
  • In this paper, we have designed 800[MHz] broad band antenna that is improves a narrow bandwidth problem of microstrip antenna and it will be able to integrate GSM, TRS band including the CDMA band. It had L-shaped feeding structure and added the U-slot it used a duplex resonance effect. Also for the improvement of profit the stack it did with the perpendicular. It seems to be good quality that design and manufactured antenna frequency bandwidth(VSWR 2:1) is 789~1086[MHz] with 297[MHz](33%). Also the E-plan and H-plan all profit 9.4[dBi] above, 3[dB] beam width was visible the quality which above $61^{\circ}$ is improved.

  • PDF

On a Suitable Frequency consideration of 700MHz Band for the disaster radiocommunication followed with DTV frequency reallocation (700MHz대역 DTV용전환에 따른 재난무선통신용 주파수 분배의 정책적 접근방안에 관한 연구)

  • Moon, Hun-Il;Yu, Seung-Duk;Hong, Wan-Pyo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • In this paper, Switching to digital TV broadcasting and mobile operators license expiration period of the frequency, time and 700MHz, 800MHz and 900MHz frequency band plan for the redistribution is actively being discussed. Redistribution policy direction of these frequency 800MHz (bandwidth 10MHz) integrated command frequency for wireless networks(i.e TETRA) is expected to be considered a redistribution. These Integrated Wireless Network Infrastructure configurations at the time and data communication capabilities of the system unwilling TETRA Release 2 standard for the system is presented. This system is analyzed that Release 1 of the existing system takes up more than 6 times the increase of frequency bands. Therefore, integration of the frequency band assigned to the command of a wireless network with the introduction of advanced systems will not be able to do. In this paper to the digital TV transition, and the policy based on analysis of trends in the 700MHz band for the integration of wireless networks, provides policy direction for the allocation plan.

  • PDF

The design of 800MHz band Broadband Antenna using L-Shaped (L형 급전구조를 이용한 800MHz대 광대역 안테나 설계)

  • Kim Pyoung-Gug;Kim Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.219-222
    • /
    • 2006
  • In this paper, we have designed 800MHz band broadband antenna which is improves of microstrip antenna narrow bandwidth problem including the CDMA band and be able to integrated the GSM and TRS band will design. It used the duplex resonance effect it had the L-Shaped feeding structure which adds the u-slot. It was measured that the frequency bandwidth of the designed antenna which is planed $897MHz\sim1013MHz$ with 215MHz(23.8%). And the antenna gain is 9.3dBi, 3dB beam width $60^{\circ}$ in both the E-plane and H-plane.

  • PDF

The design of 800MHz band Broadband Antenna using L-Shaped (L형 급전구조를 이용한 800MHz대 광대역 안테나 설계)

  • Kim Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.998-1002
    • /
    • 2006
  • In this paper, we have designed 800MHz band broadband antenna which is improves of microstrip antenna narrow bandwidth problem including the CDMA band and be able to integrated the GSM and TRS band will design. It used the duplex resonance effect it had the L-Shaped feeding structure which adds the u-slot. It was measured that the frequency bandwidth of the designed antenna which is planed $897MHz\sim1013MHz$ with 215MHz(23.8%). And the antenna gain is 9.3dBi, 3dB beam width $60^{\circ}$ in both the E-plane and H-plane.

Design and Implementation of Dielectric Resonator Bandpass Filters with Various Time-Delay (다양한 시간지연을 갖는 유전체 공진기 대역통과 필터의 구현)

  • Choi, U-Sung;Park, Noh-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2397-2402
    • /
    • 2010
  • Dielectric resonator bandpass filters with various time-delay at 800MHz were designed and fabricated in this paper. from the results of this study. first of all, good response. characteristics were measured for all cases. The insertion loss was below 2dB and flatness for ripple was below 0.2dB, whereas return loss was over 20dB, respectively. The measured delay time of the fabricated prototype were 6ns, 12ns and 200s, respectively and the flatness characteristics did not exceeding Ins for all cases. Furthermore, 2~4ns of flatness were measured for 2-hole dielectric block and other dielectric resonator filters with various delay time by combination of each prototypes filters were also implemented.

An Active Tunable Bandpass Filter Design for High Power Application (고출력 특성을 고려한 능동 가변 대역 통과 여파기 설계)

  • Kim, Do-Kwan;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • In this paper, a high power active tunable bandpass filter made of dielectric resonators and varactor diodes is designed using the active capacitance circuit generating negative resistance for tuning cellular TX, RX band. An active capacitance circuit's series feedback circuit using GaAs HFET whose $P_{1dB}$ is 32 dBm is used for compensating the losses from the varactor diodes of the tunable bandpass filter. The tuning elements, the varactor diodes are used as the back-to-back configuration to achieve the high power performance, The designed active capacitance circuit improves the insertion loss characteristics. The designed 2-stage active tunable dielectric bandpass filter at cellular band can cover from 800 MHz to 900 MHz. The insertion losses at 836 MHz and 881.5 MHz with 25 MHz bandwidth are 0.48 dB and 0.39 dB, respectively. The $P_{1dB}$ of the designed bandpass filter at TX and RX band are measured as 19.5 dBm and 23 dBm, respectively.

The Design of Stack Structure Antenna Using the U-Slot patch for 800MHz Multiple Band Applications (U-Slot 패치를 이용한 800MHz 다중대역용 적층구조)

  • Park, Jung-Ah;Yoon, Chi-Moo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.121-124
    • /
    • 2008
  • In this paper, we will design a 800MHz broadband antenna after a problem of the narrow bandwidth is improved. This multiple band antenna unifies the CDMA(Code Division Multiple Access), GSM(Global System for Mobile telecommunication) and TRS(Trunked Radio System) band in the UHF bandwidth, and then it is possible at the shore base station or repeater as the commercial use. It used the duplex resonance effect It had the L-shaped feeding structure which adds the V-slot. And it improved profit using stack structure. It was measured that the frequency bandwidth of the designed antenna which is planed $792{\sim}1040MHz$ with 248MHz(33%). And the antenna gain is 9.4dBi, 3dB beam width $60^{\circ}$ in radiation pattern.

  • PDF

The Design of 800MHz Band Repeater Antenna for Ship Base Station Application (선박기지국 응용을 위한 800MHz 대역 중계기용 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • In this paper, we have designed microstrip antenna of 800[MHz] band. It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band. we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had L-shaped feeding structure at a rectangular patch and added the parallel L-slot that used a duplex resonance effect. Also for the improvement of profit the stack with the perpendicular. Designed frequency bandwith(VSWR 2:1) of the antenna showed good characteristic of 789${\sim}$1046[MHz] to 292[MHz](36%). Also the E-plan and H-plan all profit 6.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan $44.7^{\circ} and H-plan $61.8^{\circ} to be improved.

  • PDF

The Design of U-Slot Stack Structure Antenna for 800MHz Band Coastal Sea Base Station Applications (800MHz 대역 연안해역기지국용 U-Slot 적층구조 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.984-989
    • /
    • 2008
  • In this paper, we will design a 800MHz broadband antenna after a problem of the narrow bandwidth is improved. This multiple band antenna unifies the CDMA(Code Division Multiple Access), GSM(Global System for Mobile Telecommunication) and TRS(Trunked Radio System) band in the UHF band, and then it is possible at the shore base station or repeater as the commercial use. It used the duplex resonance effect it had the L-shared feeding structure which adds the U-slot. And it improved profit using stack structure. It was measured that the frequency bandwidth of the designed antenna which is planed $792{\sim}1040MHz$ with 248MHz(33%). And the antenna gain is 9.4dBi, 3dB beam width $60^{\circ}$ in radiation pattern.