• Title/Summary/Keyword: 7-derivatives

Search Result 1,160, Processing Time 0.03 seconds

Synthesis and Herbicidal Properties of 2-(5-lsoxazolinemethoxyphenyl)-4,5,6,7-tetrahydro-2H-indazole and Their Related Derivatives (새로운 2-(5-lsoxazolinemethoxyphenyl)-4,5,6,7-tetrahydro-2-indazole의 합성과 제초활성)

  • Jeon, Dong-Ju;Kim, Young-Mi;Park, Kwaun-Yong;Kim, Hyoung-Rae;Song, Jong-Hwan;Kim, Jin-Seog;Ryu, Eung-K.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.54-57
    • /
    • 2001
  • A series of bicyclic 4,5,6,7-tetrahydroindazole derivatives 6 have been synthesized, and their herbicidal activities were studied in flooded paddy condition. The compounds 6 showed herbicidal effects to barnyardgrass and Monochoria and good tolerance against rice at a rate of $0.063kg/ha{\sim}0.25kg/ha$.

  • PDF

2-(4-Hydroxyphenyl)-5-(3-Hydroxypropenyl)-7-Methoxybenzofuran, a Novel Ailanthoidol Derivative, Exerts Anti-Inflammatory Effect through Downregulation of Mitogen-Activated Protein Kinase in Lipopolysaccharide-Treated RAW 264.7 Cells

  • Kim, Hyeon Jin;Jun, Jong-Gab;Kim, Jin-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.217-222
    • /
    • 2013
  • We reported that ailanthoidol, a neolignan from Zanthoxylum ailanthoides and Salvia miltiorrhiza Bunge, inhibited inflammatory reactions by macrophages and protected mice from endotoxin shock. We examined the anti-inflammatory activity of six synthetic ailanthoidol derivatives (compounds 1-6). Among them, compound 4, 2-(4-hydroxyphenyl)-5-(3-hydroxypropenyl)-7-methoxybenzofuran, had the lowest $IC_{50}$ value concerning nitric oxide (NO) release from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 4 suppressed the generation of prostaglandin (PG) $E_2$ and the expression of inducible NO synthase and cyclooxygenase (COX)-2 induced by LPS, and inhibited the release of LPS-induced pro-inflammatory cytokines from RAW264.7 cells. The underlying mechanism of compound 4 on anti-inflammatory action was correlated with the down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Compound 4 is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

Solid-phase Synthesis of 7-Aryl-benzo[b][1,4]oxazin-3(4H)-one Derivatives on a BOMBA Resin Utilizing the Smiles Rearrangement

  • Lee, Ji-Min;Yu, Eun-Ae;Park, Joo-Yeon;Ryu, In-Ae;Shin, Dong-Soo;Gong, Young-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1325-1330
    • /
    • 2009
  • A general method has been developed for the solid phase synthesis of drug-like 7-aryl-benzo[b][1,4]oxazin-3(4H)- one derivatives 6. The method relies on a novel, microwave irradiation promoted cyclization reaction of the BOMBA resin bound, N-substituted-$\alpha$-(2-chloro-4-bromophenoxy)acetamide 3 that takes place via a Smiles rearrangement. The 7-bromobenzo[1,4]oxazine 4, produced in this process is converted to 7-aryloxazin analogs 5 by utilizing Suzuki coupling with various substituted arylboronic acids. Finally, the target 7-aryl-benzo[b][1,4]oxazin-3(4H)-ones 6 are liberated from the resin by treatment with 5% TFA. The progress of the reactions involved in this preparative route can be monitored by using ATR-FTIR spectroscopy on a single bead. The target compounds, obtained by using this five-step sequence, are produced in high yields and purities.

Synthesis and Antifungal Evaluation of 6-(N-arylamino)-7-methylthio-5,8-quinolinediones

  • Kim, Chung-Kyu;Choi, Jung-Ah;Kim, Sung-Hee
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.440-444
    • /
    • 1998
  • A series of 6-(N-arylamino)-7-methylthio-5,8-quinolinedione derivatives 4a-4l was newly synthesized for the evaluation of antifungal activity. 6-(N-Arylamino)-7-methylthio-5,8-quinolinediones were prepared by regioselective nucleophilic substitution of 6,7-dichloro-5,8-quinolinediones with arylamines in the presence of $Ce^{3+}$, and $Na_2$S/dimethylsulfate. The MIC values of 4a-4l were determined for antifungal susceptibility in vitro against Candida species by agar streak method. The derivatives 4a-4l had generally potent antifungal activities against all human pathogenic fungi. Especially they had the most potent activity against C. krusei at 12.5-0.8 $\mu\textrm{g}$/ml. Compounds 4d, 4g, 4h, 4j and 4k had more potent antifungal activities than fluconazole. Compounds 4g and 4h completely inhibited the fungal growth at 0.8-6.3 $\mu\textrm{g}$/ml against all Candida species, while fluconazole inhibited the growth at 25 $\mu\textrm{g}$/ml. The compounds such as 4g and 4h containing an N-(4-bromo-2-methylphenyl)- or N-(4-bromo-3methylphenyl)amino substituent exhibited the most potent antifungal activities.

  • PDF

Synthesis and Antitumor Activity of 2',3'-Didehydro-3'-Didehydro-3'-deoxy-thymidine and Its Derivative

  • 이봉훈;임미경;신정희;장태식;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.711-714
    • /
    • 1997
  • In an effort to enhance the lipophilicities, thereby, the penetration into the cell membrane and to increase the antitumor activities of modified derivatives of 2',3'-didehydro-3'-deoxythymidine (d4T, 1), derivatives of 1 were designed and synthesized. Starting from thymidine, 1, 2',3'-didehydro-3'-deoxythymidine-5'-phosphate, disodium salt (d4T-p, 7), and two nicotinate esters of 1; 2',3'-didehydro-3'-deoxy-5'-O-(3-pyridinylcarbonyl)thymidine (d4T-NA, 5) and 2',3'-didehydro-3'-deoxy-5'-phosphoryl-O-(3-pyridinylcarbonyl)thymidine (d4T-p-NA, 8) were synthesized. The lipophilicities of the synthesized compounds were measured by P-values and antitumor activities of those were estimated against mouse leukemia P388, murine mammary carcinoma FM3A, and human histiocytic lymphoma U937 tumor cells in vitro. Although the lipophilicities of the nicotinate esters, 5 and 8 were increased 2.75- and 9.71-fold relative to that of 1 and 7, respectively, the synthesized compounds, 1, 5, 7, and 8 were found to be inactive against P388 and FM3A cells except weak antitumor activity against U937 cell.

Removal and Inactivation of Viruses during Manufacture of a High Purity Antihemophilic Factor VII Concentration from Human Plasma

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae;Woo, Hang-Sang;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.497-503
    • /
    • 2001
  • The purpose of this study was to examine the efficacy and mechanism of the cryo-precipitation, solvent/detergent (S/D) treatment, monoclonal anti-FVIIIc antibody (mAb) column chromatography, Q-Sepharose column chromatography, and lyophilization involved in the manufacture of antithemophilic factor VII(GreenMono) from human plasma, in the removal and/or inactivation of blood-borne viruses. A variety of experimental model viruses for human pathogenic viruses, including the bovine viral diarrhoea virus (BVDV), bovine herpes virus (BHV), murine encephalomyocarditis virus (EMCV), and porcine parvovirus (PPV), were all selected for this study. BHV and EMCV were effectively partitioned from a factor VII during the cryo-precipitation with a log reduction factor of 2.83 and 3.24, respectively. S/D treatment using the organic solvent, tri(n-butyl) phosphate (TNBP), and the detergent, Triton X-100, was a robust and effective step in inactivating enveloped viruses. The titers of BHV and BVDV were reduced from the initial titer of 8.85 and $7.89{log_10} {TCID_50}$, respectively, reaching undetectable levels within 1 min of the S/D treatment. The mAb chromatography was the most effective step for removing nonenveloped viruses, EMCV and PPV, with the log reduction factors of 4.86 and 3.72, respectively. Q-Sepharose chromatography showed a significant efficacy for partitioning BHV, BVDV, EMCV, and PPV with the log reduction the log reduction factors of 2.32, 2.49, 2.60, and 1.33 respectively. Lyophilization was an effective step in inactivating g nonenveloped viruses rather than enveloped viruses, where the log reduction factors of BHV, BVDV, DMCV, and PPV were 1.41, 1.79, 4.76, and 2.05, respectively. The cumulative log reduction factors of BHV, BVDV, EMCV, and PPV were ${\geqq}$11.12, ${\geqq}$7.88, 15.46, and 7.10, respectively. These results indicate that the production process for GreenMono has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

  • PDF

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

Comparative Molecular Field Analysis of Caspase-3 Inhibitors

  • Sathya, B.;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.166-172
    • /
    • 2014
  • Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular field analysis (CoMFA) was performed on a series of 3, 4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMFA model ($q^2=0.676$, $r^2=0.990$). The predictive ability of test set ($r^2_{pred}$) was 0.688. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Synthesis and Biological Evaluation of Novel Isopropyl 2-thiazolopyrimidine-6-carboxylate Derivatives

  • Kotaiah, Y.;Krishna, N. Hari;Raju, K. Naga;Rao, C.V.;Jonnalagadda, S.B.;Maddila, Suresh
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.68-73
    • /
    • 2012
  • In the present study, we have synthesized novel Isopropyl 2-(4-substitutedbenzylidene)-5-methyl-3-oxo-7-phenyl-3,7-dihydro-2H-thiazolo[3,2-a]-pyrimidine-6-carboxylate derivatives (6a-j). Elemental analysis, IR, $^1H$ NMR and mass spectral data elucidated structure of newly synthesized compounds. The newly synthesized compounds were screened for antiinflammatory and anti microbial studies. Their biological activity data of the 10 compounds indicates that two compounds posses potent anti-inflammatory and five have antimicrobial activities.

Synthesis of 3β [L-Lysinamide-carbamoyl] Cholesterol Derivatives by Solid-Phase Method and Characteristics of Complexes with Antisense Oligodeoxynucleotides

  • Lee, Eun-Jung;Lee, Min-hyung;Park, Jong-Sang;Choi, Joon-Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1020-1024
    • /
    • 2006
  • In this report, we describe the synthesis of mono- and di-valent cationic $3\beta$ [L-Lysinamide-carbamoyl] cholesterol (K-Chol) derivatives by solid-phase peptide synthesis method and the characteristics of K-Chol/antisense oligodeoxynucleotide (ODN) complexes. K-Chol was able to interact with antisense ODNs electrostatically and constructed nanometer-sized complexes of 50-100 nm in diameter. The formation of K-Chol/antisense ODN complexes was demonstrated by non-denaturing polyacrylamide gel electrophoresis assay and atomic force microscopy. The cell-associated radioactivity was measured to monitor the cellular uptake of the complexes containing radioactive antisense ODNs using HL 60 cells.