DOI QR코드

DOI QR Code

Comparative Molecular Field Analysis of Caspase-3 Inhibitors

  • Sathya, B. (Department of Bioinformatics, School of Bioengineering, SRM University) ;
  • Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
  • Received : 2014.09.12
  • Accepted : 2014.09.25
  • Published : 2014.09.30

Abstract

Caspases, a family of cysteinyl aspartate-specific proteases plays a central role in the regulation and the execution of apoptotic cell death. Activation of caspases-3 stimulates a signaling pathway that ultimately leads to the death of the cell. Hence, caspase-3 has been proven to be an effective target for reducing the amount of cellular and tissue damage. In this work, comparative molecular field analysis (CoMFA) was performed on a series of 3, 4-dihydropyrimidoindolones derivatives which are inhibitors of caspase-3. The best predictions were obtained for CoMFA model ($q^2=0.676$, $r^2=0.990$). The predictive ability of test set ($r^2_{pred}$) was 0.688. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. Our theoretical results could be useful to design novel and more potent caspase-3 derivatives.

Keywords

References

  1. M. D. Jacobson, M. Weil, and M. C. Raff, "Programmed cell death in animal development", Cell, Vol. 88, pp. 347-54, 1997. https://doi.org/10.1016/S0092-8674(00)81873-5
  2. G. M. Cohen, "Caspases: the executioners of apoptosis", J. Biochem., Vol. 326, pp. 1-16, 1997. https://doi.org/10.1042/bj3260001
  3. C. B. Thonberry and Y. Lazebnik, "Caspases: enemied within", Science, Vol. 281, pp. 1312-1316, 1998. https://doi.org/10.1126/science.281.5381.1312
  4. D. W. Nicolson, "Caspase structure, proteolytic substrates, and function during apoptotic cell death", Cell Death Differ., Vol. 6, pp. 1028-1042, 1999. https://doi.org/10.1038/sj.cdd.4400598
  5. J. Wang and M. J. Lenardo, "Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene deficiencies", J. Cell Sci., Vol. 113, pp. 753-757, 2000.
  6. R. E. Endres, S. Namura, M. Shomizu-Sasamata. C. Waeber, L. Zhang, T. Gomez-Isla, B. T. Hyman, and M. A. Moskowitz, "Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of caspase family", J. Cerebr. Blood F. Met., Vol. 18, pp. 238-247, 1998. https://doi.org/10.1097/00004647-199803000-00002
  7. K. M. Boatright and G. S. Salvesen, "Mechanisms of caspase activation", Curr. Opin. Cell Biol., Vol. 15, pp. 725-731, 2003. https://doi.org/10.1016/j.ceb.2003.10.009
  8. B. A. Callus and D. L. Vaux, "Caspase inhibitors: viral, cellular and chemical", Cell Death Differ., Vol. 14, pp. 73-78, 2007. https://doi.org/10.1038/sj.cdd.4402034
  9. B. R. Hu, C. L. Liu, Y. Ouyang, K. Blomgren, and B. K. Siesjo, "Involvement of caspase-3 in cell death after hypoxischemia declines during brain maturation", J. Cerebr. Blood F. Met., Vol. 20, pp. 1294-1300, 2000. https://doi.org/10.1097/00004647-200009000-00003
  10. R. S. Hotchkiss, K. C. Chang, P. E. Swanson, K. W. Tinsley, J. J. Hui, P. Klender, S. Xanthoudakis, S. Roy, C. Black, E. Grimm, R. Aspiotis, Y. Han, D. W. Nicholson, and I. E. Karl, "Caspase inhibitors improves survival in sepsis: a critical role of the lymphocyte", Nat. Immunol., Vol.1, pp. 496-501, 2000. https://doi.org/10.1038/82741
  11. D. Lee, S. A. Long, J. H. Murray, J. L. Adams, M.E. Nuttall, D. P. Nadeau, K. Kikly, J. D. Winkler, C.-M. Sung, M. D. Ryan, M. A. Levy, P. M. Keller, and W. E. DeWolf, Jr, "Potent and selective non peptide inhibitors of caspase 3 and 7", J. Med. Chem, Vol. 44, pp. 2015-2026, 2001. https://doi.org/10.1021/jm0100537
  12. H. Yaoita, K. Ogawa, K. Maehara, and Y. Maruyama, "Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor", Circulation, Vol. 97, pp. 276-281, 1998. https://doi.org/10.1161/01.CIR.97.3.276
  13. J. Schoenberger, J. Bauer, J. Moosbauer, C. Eilles, and D. Grimm, "Innovative strategies in in-vivo apoptosis imaging", Curr. Med. Chem, Vol. 15, pp. 187-194, 2008. https://doi.org/10.2174/092986708783330647
  14. D. K. Perry, M. J. Smyth, H. R. Stennicke, G. S. Salvessan, P. Duriez, G. G. Poirier, and Y. A. Hannun, "Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis", J. Biol. Chem, Vol. 272, pp. 18530-18533, 1997. https://doi.org/10.1074/jbc.272.30.18530
  15. G. Porter and R. U. Janicke, "Emerging roles of caspase 3 in apoptosis", Cell Death Differ., Vol. 6, pp. 99-104, 1999. https://doi.org/10.1038/sj.cdd.4400476
  16. C. W. Scott, C. Sobotka-Brinker, D. E. Wilkins, R. T. Jacobs, J. J. Folmer, W. J. Frazee, R. V. Bhat, S. V. Ghanekar, and D. Aharony, "Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis", J. Pharmacol. Exp. Ther, Vol 304, pp. 433-440, 2003. https://doi.org/10.1124/jpet.102.039651
  17. D. V. Kravchenko, V. M. Kysil, S. E. Tkachenko, S. Maliarchouk, I. M. Okun, and A. V. Ivanchtchenko, "Pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors. Synthesis and SAR of 2-substituted 4-methyl-8-(morpholine-4-sulfonyl)-pyrrolo [3,4-c]quinoline-1,3-diones", Eur. J. Med. Chem, Vol. 40, pp. 1377-1383, 2005. https://doi.org/10.1016/j.ejmech.2005.07.011
  18. W. Chu, J. Zhang, C. Zeng, J. Rothfuss, Z. Tu, Y. Chu, D.E. Reichert, M. J. Welch, and R. H. Mach, "N-Benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: Synthesis, in vitro activity and molecular modeling studies", J. Med. Chem, Vol. 48, pp. 7637-7647, 2005. https://doi.org/10.1021/jm0506625
  19. L. M. Havrana, D. C. Chonga, W. E. Childersa, P. J. Dollingsa, A. Dietricha, B. L. Harrisona, V. Mar athiasa, G. Tawaa, A. Aulabaughb, R. Cowlingb, B. Kapoorb, W. Xuc, L. Mosyakc, F. Moyc, W.-T. Humc, A. Woodd, and A. J. Robichauda, "3.4-Dihydropyrimido( 1,2-a)indol-10(2H)-ones as potent non-peptidic inhibitors of caspase-3", Bioorgan. Med. Chem., Vol. 17, pp. 7755-7768, 2009. https://doi.org/10.1016/j.bmc.2009.09.036
  20. R. S. Hotchkiss, K. C. Chang, P. E. Swanson, K. W. Tinsley, J. J. Hui, P. Klender, S. Xanthoudakis, S. Roy, C. Black, E. Grimm, R. Aspiotis, Y. Han, D. W. Nicholson, and I. E. Karl, "Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte", Nat. Immunol. Vol.1, pp. 496-501, 2000. https://doi.org/10.1038/82741
  21. M. Thirumurthy, K. Gugan, G. Changdev, and S. J. Cho, "QSAR analysis on PfPK7 inhibitors using HQSAR, CoMFA and CoMSIA", Med. Chem. Res., Vol. 21, pp. 681-693, 2012. https://doi.org/10.1007/s00044-011-9572-x
  22. S. J. Cho and A. Tropsha, "Cross validated R2 guided region selection for comparative molecular field analysis: a simple method to achieve consistent results", J. Med. Chem., Vol. 38, pp. 1060-1066, 1995. https://doi.org/10.1021/jm00007a003
  23. S. Wold, M. Sjostrom, and L. Eriksson, "PLS regression: a basic tool of chemometrics", Chemometr. Intell. Lab., Vol. 58, pp. 109-130, 2001. https://doi.org/10.1016/S0169-7439(01)00155-1

Cited by

  1. Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.273
  2. Docking Study of Human Galactokinase Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.267
  3. Comparative Molecular Field Analysis of CXCR-2 Inhibitors vol.9, pp.2, 2016, https://doi.org/10.13160/ricns.2016.9.2.121
  4. Comparative Molecular Similarity Indices Analysis of CXCR-2 Inhibitors vol.9, pp.3, 2016, https://doi.org/10.13160/ricns.2016.9.3.177
  5. 3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors vol.8, pp.4, 2015, https://doi.org/10.13160/ricns.2015.8.4.258