• Title/Summary/Keyword: 6M model

Search Result 3,895, Processing Time 0.032 seconds

Experimental and Analytical Study on Hydrogen-air Deflagrations in Open Atmosphere (개방 공간에서 발생하는 수소-공기 혼합 가스 폭연에 대한 실험적/해석적 연구)

  • Kim, Yangkyun;Park, Byoung Jik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Experimental and analytical investigations are performed to explore the explosion characteristics of a hydrogen-air mixture in open atmosphere. A hydrogen-air mixture tent of total volume of 27 m3, with 40% hydrogen volume, is used to observe overpressure at a distance from the ignition source. Vapor cloud explosion analyses are performed using the TNO multi-energy model and Baker-Strehlow-Tang model. The results of these analyses are compared with experiment done from this study and references. The experimental results with and without obstacles indicate that the overpressure values measured at a distance of 4.5-21.5 m from the ignition source are about 9.4-3.6 kPa and 6.5-2 kPa, respectively. This implies that the overpressure with obstacles is approximately 1.7 times greater than that without obstacles. Analytical observation indicates that the results obtained with the Baker-Strehlow-Tang model with Mf = 0.2-0.35 are in good agreement with those of most of the previous studies, including that obtained from this study. Moreover, the TNO multi-energy model with a volume of 27 m3 well predicts the overpressure obtained from this study. Further studies should considered explosions in semi-confined spaces, which is more suitable for hydrogen refueling stations.

Data Interworking Model Between DLMS and LwM2M Protocol (DLMS와 LwM2M 프로토콜 간 데이터 연동 모델 연구)

  • Myoung, Nogil;Park, Myunghye;Kim, Younghyun;Kang, Donghoon;Eun, Changsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2020
  • Despite the same system architecture and operation principle, Advanced Metering Infrastructure (AMI) and Internet of Things (IoT) are recognized as a heterogeneous system. This is due to the different object modeling and communication protocols used in smart meters and sensors. However, data interworking between AMI and IoT is expected to be inevitable in the future. In this paper, we propose Device Language Message Specification (DLMS) to Lightweight Machine to Machine (LwM2M) conversion model. The proposed interworking model can reduce the packet size by 46.5% compared to that of the encapsulation method.

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF

A Numerical Study for the Maximizing Water Vapor Flux and Thermal Efficiency in Direct Contact Membrane Distillation (DCMD) Process (직접 접촉식 막증류 공정에서 담수 투과량 및 열효율 극대화를 위한 수치적 연구)

  • Kim, Sang-Hun;Lee, Jung-Gil;Kim, Woo-Seung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.369-380
    • /
    • 2012
  • A one-dimensional numerical model based on the energy and mass equations have been developed to predict the trans membrane water vapor flux and thermal efficiency under various operating conditions in Direct Contact Membrane Distillation (DCMD) process. The model validation have been carried out by experimental data from literature and showed good agreement. The effect of operating parameters such as brine inlet temperature and velocity, and distillate inlet temperature and velocity to increase water vapor flux and thermal efficiency were predicted by the steady-state model. The results showed that the inlet temperature and velocity in brine side are dominant factors to control the water vapor flux and thermal efficiency because the effect of inlet temperature and velocity in brine side showed the higher water vapor flux and thermal efficiency than that of inlet temperature and velocity in distillate side. The water vapor flux was increased 3.4 times in the range of 21.22 $kg/m^2h$ to 71.26 $kg/m^2h$ and the thermal efficiency was increased 37.5% in that of 0.556 to 0.765 with increasing brine inlet temperature from $60^{\circ}C$ to $95^{\circ}C$. Meanwhile, the water vapor flux was increased 30% in that of 27.91 $kg/m^2h$ to 36.33 $kg/m^2h$ and thermal efficiency increased 7.5% in that of 0.6 to 0.646 as the brine inlet velocity was increased from 60 m/h to 300 m/h.

THE UNUSUAL STELLAR MASS FUNCTION OF STARBURST CLUSTERS

  • Dib, Sami
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.157-160
    • /
    • 2007
  • I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at $6M_{\bigodot}$. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few $10^4$ years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is $1.45{\times}10^5M_{\bigodot}$, which is slightly higher than the often quoted, but completeness affected, observational value of a few $10^4M_{\bigodot}$. The model implies a star formation efficiency of ${\sim}30$ percent which implies that the Arches cluster is likely to a gravitationally bound system.

Biodegradation Kinetics of Phenol and pcresol by Micrococcus sp. M1 (Micrococcus sp. M1에 의한 Phenol과 p-Creso의 생분해 Kinetics)

  • Son, Hong-Joo;Jang, Woong-Seok;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.153-163
    • /
    • 1997
  • In order to fad the most fitted biodegradation model, biodegradation kinetics model to the initial phenol and p-cresot concentrations were investigated and had been fitted by the linear regression. Bacteria capable of degrading p-cresol were isolated from soil by enrichment culture technique. Among them, strain Ml capable of degradillg p.rcresol has also degraded phenal and was identified as the genus Micrococcus from the results from of taxonomical studies. The optimal tonditlons for the biodegradation of phenal and p-cresol by Micrococcus sp. Ml were $NH_4NO_3$ 0.05%, pH 7.0, 3$0^{\circ}C$, respectively, and medium volume 100m1/250m1 shaking flask. iwicrococcus sp. Ml was able to grow on phenal concentration up to 14mM and p-cresol concelltration up to 0.8mM. With increasing substrate concentraction, the lag period increased, but the maximum specific growth rates decreased. The yield coefficient decreased with increasing substrate concentation. The biodegradation kinetics of phenol and p-cresol were best described by Monod with growth model for every experimented concentration. In cultivation of mixed substrate, p-cresol was degraded first and phenol was second. This result implies that p-cresol and phenol was not degraded simultaneously.

  • PDF

A mathematical model to predict fatigue notch factor of butt joints

  • Nguyen, Ninh T.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.467-471
    • /
    • 1998
  • A mathematical model is developed to predict the fatigue notch factor of butt welds subject to number of parameters such as weld geometry, residual stresses under dynamic combined loading conditions (tensile and bending). Linear elastic fracture mechanics, finite element analysis, dimensional analysis and superposition approaches are used for the modelling. The predicted results are in good agreement with the available experimental data. As a result, scatters of the fatigue data can be significantly reduced by plotting S-N curve as ($S{\cdot}K_f$) vs. N.

Objective Cloud Type Classification of Meteorological Satellite Data Using Linear Discriminant Analysis (선형판별법에 의한 GMS 영상의 객관적 운형분류)

  • 서애숙;김금란
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1990
  • This is the study about the meteorological satellite cloud image classification by objective methods. For objective cloud classification, linear discriminant analysis was tried. In the linear discriminant analysis 27 cloud characteristic parameters were retrieved from GMS infrared image data. And, linear cloud classification model was developed from major parameters and cloud type coefficients. The model was applied to GMS IR image for weather forecasting operation and cloud image was classified into 5 types such as Sc, Cu, CiT, CiM and Cb. The classification results were reasonably compared with real image.

Influence of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic solid via 3PHL

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.569-575
    • /
    • 2024
  • The objective of this study is to investigate the influence of an inclined load, location, and time on the behavior of a fiber-reinforced visco-thermoelastic half-space. The displacement, stress, and temperature distributions are derived from the normal mode analysis. The problem is analyzed using a three-phase-lag model. MATLAB programming is employed to ascertain the physical fields with appropriate boundary conditions and to perform numerical computations. The outcomes are then examined with different inclination loads, time, and location settings.